Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es muss schon richtig kalt sein

18.04.2006


Privatdozent Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Ruprecht-Karls-Universität Heidelberg nutzt Heisenberg-Stipendium zur Erforschung der Dynamik ultrakalter Gase



Kalte Gase haben es dem Privatdozenten Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Heidelberger Ruprecht-Karls-Universität angetan. Das Wort "kalt" bedeutet in diesem Zusammenhang extrem kalt, nämlich ganz nahe der absoluten Tiefsttemperatur von minus 273,15 Grad Celsius. Unter diesen Bedingungen ist es möglich, Materie in einen besonderen Zustand zu bringen, das so genannte Bose-Einstein-Kondensat. Hierbei verhalten sich die Atome absolut gleich, wie ein einziges Superatom. Dieser Materie-Zustand wurde 1925 von Albert Einstein vorhergesagt, inspiriert durch eine bahnbrechende Arbeit des indischen Physikers Satyendra Nath Bose. Aber erst 70 Jahre später gelang es, ein reines Bose-Einstein-Kondensat tatsächlich im Labor zu erzeugen.



"Die Methoden zur Herstellung des Bose-Einstein-Kondensats haben die Atomphysik revolutioniert", erklärt der 37-jährige Physiker Gasenzer. In der äußerst dünnen Gaswolke, die aus etwa 1000 bis einigen Millionen Atomen besteht, bewegen sich die Teilchen nämlich fast nicht mehr, und damit wird es möglich, Eigenschaften der Atome wesentlich besser zu messen und zu verstehen. So kann das Bose-Einstein-Kondensat auch Auswirkungen auf das alltägliche Leben haben, ist doch heute die Zeit über die Frequenz der Schwingung des Cäsium-Atoms definiert. Die Länge einer Sekunde kann nur so genau wie die Frequenz des "Tickens" der Cäsiumuhr bekannt sein. Die heute erreichte Genauigkeit spielt beispielsweise beim Global Positioning System (GPS) eine große Rolle. Denn nur dadurch, dass die Uhren in den Satelliten gleich gehen, ist es möglich, genaue Ortsbestimmungen vorzunehmen.

Das kürzlich an Thomas Gasenzer verliehene Heisen-berg-Stipendium der Deutschen Forschungs-gemein-schaft möchte er nutzen, um in den nächsten fünf Jahren mehr Wissen über die Dynamik dieser kalten Gase zu gewinnen. Wie bewegen sich beispielsweise diese Systeme, wenn sie plötzlich aus ihrer Ruhe gerissen werden? Eine Frage, der Thomas Gasenzer zusammen mit der von ihm geleiteten Arbeitsgruppe nachgehen will, denn bisher sind die theoretischen Grundlagen zur Beschreibung derartiger Vorgänge wenig erforscht.

Die Bewegung der Atome in den Gaswolken kann sehr leicht eine Gestalt wie die von Turbulenzen in einem reißenden Wildbach annehmen. Ganz anders als im Bach sind jedoch die Atome im Kondensat 1000 Mal weiter voneinander entfernt, so dass sie zunächst einmal seltener aneinander stoßen. Trotzdem "spüren" sie sich, und das liegt daran, dass sie sich als so genannte Quantenteilchen in ihrer Restbewegung gleich verhalten und so absolut ununterscheidbar sind. Wenn aber das Kondensat in Unruhe versetzt wird, beginnt es zu schwingen und sich aufzulösen. Die Atome stoßen dann häufiger aneinander, und es entsteht eine faszinierende Komplexität.

Zur Beobachtung der Bewegung eines Bose-Einstein-Kondensats haben die Physiker im Labor ausgefeilte und doch erstaunlich einfach erscheinende Methoden entwickelt: "Man schickt zum Beispiel den Lichtstrahl eines Lasers durch das Kondensat und nimmt ihn mit einer Videokamera auf. Aus der Bewegung des Schattens der Atome schließt man auf deren Dynamik", erläutert Thomas Gasenzer. Als theoretischer Physiker ist er auch auf die Überprüfung seiner Überlegungen im Labor angewiesen. "Dabei ist für mich wichtig zu wissen, was genau bei Experimenten machbar ist", betont er. Deshalb unterhält er enge Kontakte zu den Heidelberger Professoren Jörg Schmiedmayer vom Physikalischen Institut und Markus Oberthaler vom Kirchhoff-Institut für Physik, die beide experimentell an Bose-Einstein-Kondensaten forschen.

Die Berechnungen, die der theoretische Physiker Gasenzer im mikroskopischen Maßstab des aus einer Art von Atomen bestehenden Bose-Einstein-Kondensates vornimmt, können aber auch Konsequenzen für große Vielteilchensysteme haben. Dazu gehört beispielsweise auch das Universum, das in einem frühen Stadium sehr schnell expandierte, und die physikalischen Bewegungsgesetze hierfür sind eng mit denen für ultrakalte Atomgase verwandt.
Stefan Zeeh

Rückfragen bitte an:
Privatdozent Dr. Thomas Gasenzer
Institut für Theoretische Physik
Universität Heidelberg
Philosophenweg 16, 69120 Heidelberg
Tel. 06221 549416
t.gasenzer@thphys.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Atom Bose-Einstein-Kondensat Kondensat Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie