Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es muss schon richtig kalt sein

18.04.2006


Privatdozent Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Ruprecht-Karls-Universität Heidelberg nutzt Heisenberg-Stipendium zur Erforschung der Dynamik ultrakalter Gase



Kalte Gase haben es dem Privatdozenten Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Heidelberger Ruprecht-Karls-Universität angetan. Das Wort "kalt" bedeutet in diesem Zusammenhang extrem kalt, nämlich ganz nahe der absoluten Tiefsttemperatur von minus 273,15 Grad Celsius. Unter diesen Bedingungen ist es möglich, Materie in einen besonderen Zustand zu bringen, das so genannte Bose-Einstein-Kondensat. Hierbei verhalten sich die Atome absolut gleich, wie ein einziges Superatom. Dieser Materie-Zustand wurde 1925 von Albert Einstein vorhergesagt, inspiriert durch eine bahnbrechende Arbeit des indischen Physikers Satyendra Nath Bose. Aber erst 70 Jahre später gelang es, ein reines Bose-Einstein-Kondensat tatsächlich im Labor zu erzeugen.



"Die Methoden zur Herstellung des Bose-Einstein-Kondensats haben die Atomphysik revolutioniert", erklärt der 37-jährige Physiker Gasenzer. In der äußerst dünnen Gaswolke, die aus etwa 1000 bis einigen Millionen Atomen besteht, bewegen sich die Teilchen nämlich fast nicht mehr, und damit wird es möglich, Eigenschaften der Atome wesentlich besser zu messen und zu verstehen. So kann das Bose-Einstein-Kondensat auch Auswirkungen auf das alltägliche Leben haben, ist doch heute die Zeit über die Frequenz der Schwingung des Cäsium-Atoms definiert. Die Länge einer Sekunde kann nur so genau wie die Frequenz des "Tickens" der Cäsiumuhr bekannt sein. Die heute erreichte Genauigkeit spielt beispielsweise beim Global Positioning System (GPS) eine große Rolle. Denn nur dadurch, dass die Uhren in den Satelliten gleich gehen, ist es möglich, genaue Ortsbestimmungen vorzunehmen.

Das kürzlich an Thomas Gasenzer verliehene Heisen-berg-Stipendium der Deutschen Forschungs-gemein-schaft möchte er nutzen, um in den nächsten fünf Jahren mehr Wissen über die Dynamik dieser kalten Gase zu gewinnen. Wie bewegen sich beispielsweise diese Systeme, wenn sie plötzlich aus ihrer Ruhe gerissen werden? Eine Frage, der Thomas Gasenzer zusammen mit der von ihm geleiteten Arbeitsgruppe nachgehen will, denn bisher sind die theoretischen Grundlagen zur Beschreibung derartiger Vorgänge wenig erforscht.

Die Bewegung der Atome in den Gaswolken kann sehr leicht eine Gestalt wie die von Turbulenzen in einem reißenden Wildbach annehmen. Ganz anders als im Bach sind jedoch die Atome im Kondensat 1000 Mal weiter voneinander entfernt, so dass sie zunächst einmal seltener aneinander stoßen. Trotzdem "spüren" sie sich, und das liegt daran, dass sie sich als so genannte Quantenteilchen in ihrer Restbewegung gleich verhalten und so absolut ununterscheidbar sind. Wenn aber das Kondensat in Unruhe versetzt wird, beginnt es zu schwingen und sich aufzulösen. Die Atome stoßen dann häufiger aneinander, und es entsteht eine faszinierende Komplexität.

Zur Beobachtung der Bewegung eines Bose-Einstein-Kondensats haben die Physiker im Labor ausgefeilte und doch erstaunlich einfach erscheinende Methoden entwickelt: "Man schickt zum Beispiel den Lichtstrahl eines Lasers durch das Kondensat und nimmt ihn mit einer Videokamera auf. Aus der Bewegung des Schattens der Atome schließt man auf deren Dynamik", erläutert Thomas Gasenzer. Als theoretischer Physiker ist er auch auf die Überprüfung seiner Überlegungen im Labor angewiesen. "Dabei ist für mich wichtig zu wissen, was genau bei Experimenten machbar ist", betont er. Deshalb unterhält er enge Kontakte zu den Heidelberger Professoren Jörg Schmiedmayer vom Physikalischen Institut und Markus Oberthaler vom Kirchhoff-Institut für Physik, die beide experimentell an Bose-Einstein-Kondensaten forschen.

Die Berechnungen, die der theoretische Physiker Gasenzer im mikroskopischen Maßstab des aus einer Art von Atomen bestehenden Bose-Einstein-Kondensates vornimmt, können aber auch Konsequenzen für große Vielteilchensysteme haben. Dazu gehört beispielsweise auch das Universum, das in einem frühen Stadium sehr schnell expandierte, und die physikalischen Bewegungsgesetze hierfür sind eng mit denen für ultrakalte Atomgase verwandt.
Stefan Zeeh

Rückfragen bitte an:
Privatdozent Dr. Thomas Gasenzer
Institut für Theoretische Physik
Universität Heidelberg
Philosophenweg 16, 69120 Heidelberg
Tel. 06221 549416
t.gasenzer@thphys.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Atom Bose-Einstein-Kondensat Kondensat Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie