Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es muss schon richtig kalt sein

18.04.2006


Privatdozent Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Ruprecht-Karls-Universität Heidelberg nutzt Heisenberg-Stipendium zur Erforschung der Dynamik ultrakalter Gase



Kalte Gase haben es dem Privatdozenten Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Heidelberger Ruprecht-Karls-Universität angetan. Das Wort "kalt" bedeutet in diesem Zusammenhang extrem kalt, nämlich ganz nahe der absoluten Tiefsttemperatur von minus 273,15 Grad Celsius. Unter diesen Bedingungen ist es möglich, Materie in einen besonderen Zustand zu bringen, das so genannte Bose-Einstein-Kondensat. Hierbei verhalten sich die Atome absolut gleich, wie ein einziges Superatom. Dieser Materie-Zustand wurde 1925 von Albert Einstein vorhergesagt, inspiriert durch eine bahnbrechende Arbeit des indischen Physikers Satyendra Nath Bose. Aber erst 70 Jahre später gelang es, ein reines Bose-Einstein-Kondensat tatsächlich im Labor zu erzeugen.



"Die Methoden zur Herstellung des Bose-Einstein-Kondensats haben die Atomphysik revolutioniert", erklärt der 37-jährige Physiker Gasenzer. In der äußerst dünnen Gaswolke, die aus etwa 1000 bis einigen Millionen Atomen besteht, bewegen sich die Teilchen nämlich fast nicht mehr, und damit wird es möglich, Eigenschaften der Atome wesentlich besser zu messen und zu verstehen. So kann das Bose-Einstein-Kondensat auch Auswirkungen auf das alltägliche Leben haben, ist doch heute die Zeit über die Frequenz der Schwingung des Cäsium-Atoms definiert. Die Länge einer Sekunde kann nur so genau wie die Frequenz des "Tickens" der Cäsiumuhr bekannt sein. Die heute erreichte Genauigkeit spielt beispielsweise beim Global Positioning System (GPS) eine große Rolle. Denn nur dadurch, dass die Uhren in den Satelliten gleich gehen, ist es möglich, genaue Ortsbestimmungen vorzunehmen.

Das kürzlich an Thomas Gasenzer verliehene Heisen-berg-Stipendium der Deutschen Forschungs-gemein-schaft möchte er nutzen, um in den nächsten fünf Jahren mehr Wissen über die Dynamik dieser kalten Gase zu gewinnen. Wie bewegen sich beispielsweise diese Systeme, wenn sie plötzlich aus ihrer Ruhe gerissen werden? Eine Frage, der Thomas Gasenzer zusammen mit der von ihm geleiteten Arbeitsgruppe nachgehen will, denn bisher sind die theoretischen Grundlagen zur Beschreibung derartiger Vorgänge wenig erforscht.

Die Bewegung der Atome in den Gaswolken kann sehr leicht eine Gestalt wie die von Turbulenzen in einem reißenden Wildbach annehmen. Ganz anders als im Bach sind jedoch die Atome im Kondensat 1000 Mal weiter voneinander entfernt, so dass sie zunächst einmal seltener aneinander stoßen. Trotzdem "spüren" sie sich, und das liegt daran, dass sie sich als so genannte Quantenteilchen in ihrer Restbewegung gleich verhalten und so absolut ununterscheidbar sind. Wenn aber das Kondensat in Unruhe versetzt wird, beginnt es zu schwingen und sich aufzulösen. Die Atome stoßen dann häufiger aneinander, und es entsteht eine faszinierende Komplexität.

Zur Beobachtung der Bewegung eines Bose-Einstein-Kondensats haben die Physiker im Labor ausgefeilte und doch erstaunlich einfach erscheinende Methoden entwickelt: "Man schickt zum Beispiel den Lichtstrahl eines Lasers durch das Kondensat und nimmt ihn mit einer Videokamera auf. Aus der Bewegung des Schattens der Atome schließt man auf deren Dynamik", erläutert Thomas Gasenzer. Als theoretischer Physiker ist er auch auf die Überprüfung seiner Überlegungen im Labor angewiesen. "Dabei ist für mich wichtig zu wissen, was genau bei Experimenten machbar ist", betont er. Deshalb unterhält er enge Kontakte zu den Heidelberger Professoren Jörg Schmiedmayer vom Physikalischen Institut und Markus Oberthaler vom Kirchhoff-Institut für Physik, die beide experimentell an Bose-Einstein-Kondensaten forschen.

Die Berechnungen, die der theoretische Physiker Gasenzer im mikroskopischen Maßstab des aus einer Art von Atomen bestehenden Bose-Einstein-Kondensates vornimmt, können aber auch Konsequenzen für große Vielteilchensysteme haben. Dazu gehört beispielsweise auch das Universum, das in einem frühen Stadium sehr schnell expandierte, und die physikalischen Bewegungsgesetze hierfür sind eng mit denen für ultrakalte Atomgase verwandt.
Stefan Zeeh

Rückfragen bitte an:
Privatdozent Dr. Thomas Gasenzer
Institut für Theoretische Physik
Universität Heidelberg
Philosophenweg 16, 69120 Heidelberg
Tel. 06221 549416
t.gasenzer@thphys.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Atom Bose-Einstein-Kondensat Kondensat Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik