Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrascharfes Lichtmikroskop entschlüsselt grundlegende Mechanismen der Nervenkommunikation

18.04.2006


Göttinger Max-Planck-Forschern gelingt mit neuer Mikroskopie-Technik erstmals Nanostrukturen der biologischen Signalübertragung sichtbar zu machen


Die STED-Mikroskopie. Der blaue Lichtstrahl (EXC beam) wird mithilfe eines geeigneten Spiegels in das Objektiv (Lens) gelenkt, wo er aufgrund der Beugung zu einem Spot von ca. 200 Nanometer Durchmesser fokussiert wird. Er regt Fluoreszenz-Markermoleküle an, mit denen man die zu untersuchenden Moleküle (z. B. Proteine) der Probe markiert hat. Die Markermoleküle gelangen so in einen höheren Energiezustand, aus dem sie Licht anderer Wellenlänge emittieren (Fluoreszenz) und dabei in den Grundzustand zurückkehren. Das Fluoreszenzlicht (grün) wird vom selben Objektiv aufgefangen und im Detektor registriert. Rastert man mit diesem blauen Anregungs-Spot die Probe (Zelle) ab und registriert jeweils das entstehende Fluoreszenzlicht in einem Rechner, so bekommt man ein Bild der Probe. Dabei gilt: Je kleiner der Anregungs-Spot, desto schärfer ist das Mikroskop. Leider lässt sich aufgrund der Beugung der Anregungspot normalerweise nicht weiter verkleinern. Der Trick der STED-Mikroskopie besteht nun darin, dass man einen zweiten Strahl (STED beam, orange eingezeichnet) verwendet, der die angeregten Fluoreszenzmarker abregt, bevor sie Fluoreszenzlicht emittieren. Wenn man den STED-Strahl ringförmig (STED spot) um den Anregungs-Spot ausbildet, bewirkt man, dass vorwiegend Marker aus dem Außenbereich des Anregungsspots abgeregt werden und nicht in seinem Inneren. Das Ergebnis ist ein effektiver Fluoreszenzspot (grün), der hier auf etwa 66 Nanometer im Durchmesser reduziert ist. Macht man den STED-spot sehr intensiv, lässt sich dieser Fleck prinzipiell bis auf Molekülgröße schärfen und eine molekulare Auflösung erzielen - eine spannende Aufgabe für die nahe Zukunft. Bild: Max-Planck-Institut für biophysikalische Chemie


Auflösungsgewinn durch STED-Mikroskopie anhand synaptischer Vesikel. Herkömmliche, so genannte konfokale Mikroskope sind nicht in der Lage, Proteine, die zu einzelnen Vesikeln gehören, in der Synapse einer Nervenzelle aufzulösen. Im Gegensatz dazu macht die STED-Mikroskopie diese Moleküle sichtbar - wie hier in der Abbildung rechts das Protein Synaptotagmin. Bild: Max-Planck-Institut für biophysikalische Chemie



Ein neues Fenster in die biologische Nanowelt haben Forscher des Göttinger Max-Planck-Instituts für biophysikalische Chemie aufgestoßen: Mit Hilfe der am selben Institut neu entwickelten STED-Mikroskopie (Stimulated Emission Depletion) konnten die Forscher jetzt erstmals Proteine in einzelnen synaptischen Vesikeln abbilden und klären, wie die an der Synapse ausgeschütteten Proteine recycelt werden (Nature, 13. April 2006). In einer fast parallel in "Science" (Science Express 13. April 2006) erscheinenden Publikation haben die Forscher die STED-Mikroskopie eingesetzt um mit Wissenschaftlern des European Neuroscience Institute und der Universität Würzburg zu klären, auf welche Weise sich das Protein Bruchpilot in Synapsen räumlich anordnet und dadurch die Ausbildung aktiver synaptischer Zonen induziert. Die STED-Mikroskopie unterscheidet sich somit radikal von der herkömmlichen Lichtmikroskopie, da ihre Auflösung nicht mehr durch die Lichtwellenlänge begrenzt wird. Dadurch sind optische Untersuchungen in Zellen nunmehr auch auf der Nanometerskala möglich.



Seit seiner Erfindung im 17. Jahrhundert ist das Lichtmikroskop d e r Schlüssel zu neuen biologischen und medizinischen Erkenntnissen. Doch Licht unterliegt als Welle der Beugung, deren auflösungsbegrenzende Wirkung von Ernst Abbe bereits 1873 erkannt wurde. Laut Abbe können Strukturen, die enger als 200 Nanometer beieinander liegen, nicht scharf voneinander getrennt werden. Sie erscheinen im Lichtmikroskop lediglich als verschwommenes Ganzes. Abbes Erkenntnis galt lange Zeit als unüberwindbar: Für eine höhere Auflösung - so die Lehrmeinung - könnte man nur ein Elektronenmikroskop einsetzen.

Obwohl sich Elektronen in der Tat schärfer bündeln lassen, ist es schwierig, spezifische Proteine in einer Zelle elektronenmikroskopisch sichtbar zu machen. Hinzu kommt, dass Elektronenstrahlen nur wenige Mikrometer in eine Probe eindringen. Unter anderem deshalb hat die Elektronenmikroskopie trotz höherer Auflösung bisher viele Fragen im biologischen Mikrokosmos offen gelassen. Hingegen kann man mit fluoreszierenden Markermolekülen einzelne Proteine spezifisch und effizient markieren und im optischen Fluoreszenzmikroskop sichtbar machen. Doch bisher haperte es hier an der Auflösung.

Doch Forschern der Abteilung NanoBiophotonik am Göttinger Max-Planck-Institut für biophysikalische Chemie ist es in den letzen Jahren nun gelungen, mit der Stimulated Emission Depletion (STED)-Mikroskopie die Abbesche Auflösungsgrenze in der Fluoreszenzmikroskopie zu überwinden. Ein STED-Mikroskop, wie es auch in den beiden jüngsten Forschungsprojekten eingesetzt wurde, erreicht eine Auflösung von 50 bis 70 Nanometer. Damit reduziert sich die Fläche des Fluoreszenzspots von ursprünglich 200 Nanometer Durchmesser um etwa eine Größenordnung.

Diese Auflösung reichte den Forschern der Abteilung "Neurobiologie" am selben Max-Planck-Institut jetzt aus, um erstmals Proteine einzelner synaptischer Vesikel im Detail sichtbar zu machen. Sie visualisierten das Protein Synaptotagmin, das sich in der Membran der Vesikel befindet. Vesikel sind mit einem Nervenbotenstoff gefüllte Membranbläschen von ca. 40 Nanometer Größe, welche den Botenstoff zur Kontaktstelle zwischen zwei Nervenzellen, der Synapse, transportieren. Ihren Inhalt schütten sie an der Synapse aus, indem sie mit der Membran der Nervenzelle verschmelzen.

Unklar war bisher jedoch, ob die in der Membran der Vesikel enthaltenen und für die fehlerfreie Neurokommunikation mitverantwortlichen Proteine, wie etwa Synaptotagmin, sich nach der Verschmelzung des Vesikels über die Membran verteilen, oder ob sie zusammen bleiben. Die Göttinger Forscher konnten nun mithilfe der STED-Mikroskopie zeigen, dass die Synaptotagmin-Moleküle nach der Verschmelzung auf der Nervenmembran miteinander verbunden bleiben. Die Nervenzelle scheint sich also recht ‚ökonomisch’ zu verhalten - die in die Membran ausgeschütteten Proteine können "im Sammelpack" wieder aufgenommen werden.

Doch neuronale Vesikel werden nicht überall an einer Synapse gleich wahrscheinlich ausgeschüttet, sondern bevorzugt an so genannten "aktiven Zonen". Ein seinerzeit in der Fruchtfliege entdecktes Protein mit dem Namen Bruchpilot spielt bei der Formierung dieser aktiven Zonen eine entscheidende Rolle, wie eine parallel in "Science" publizierte gemeinsame Arbeit des Max-Planck-Instituts für biophysikalische Chemie, des European Neuroscience Institute und der Universität Würzburg zeigt. Mithilfe der STED-Mikroskopie entdeckten die Wissenschaftler, dass sich das Protein Bruchpilot in Ringen von etwa 150 Nanometer Durchmesser anordnet und auf diese Weise zur Ausbildung von aktiven Zonen führt. Dort scheint Bruchpilot die Nähe zwischen Kalziumkanälen und Vesikeln zu etablieren, um somit effiziente Transmitterfreisetzung zu ermöglichen.

Beide Studien belegen eindeutig, dass Untersuchungen biologischer Zellen im Nanometerbereich nicht mehr nur der Elektronenmikroskopie vorbehalten sind. Im Gegenteil, aufgrund bereits durchgeführter physikalischer Studien (vgl. Pressemitteilung [2]) weiß man inzwischen, dass die Auflösung der STED-Mikroskopie noch um ein Vielfaches gesteigert werden kann - prinzipiell bis auf molekulare Schärfe. Die STED-Mikroskopie scheint demnach ein neues Kapitel in der Mikroskopie aufzuschlagen, in dem grundlegende Fragestellungen der Zellbiologie auf der Nanoskala auch oder gerade mit fokussiertem Licht gelöst werden können. [SH/AT]

Originalveröffentlichung:

Katrin I. Willig, Silvio O. Rizzoli, Volker Westphal, Reinhard Jahn & Stefan W. Hell
STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis
Nature, 13 April 2006

Kittel, R. J., C. Wichmann, T. M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D. A. Wagh, C. Pawlu, R. R. Kellner, K. I. Willig, S. W. Hell, E. Buchner, M. Heckmann, S. J. Sigrist
Bruchpilot Promotes Active Zone Assembly, Ca(2+) - Channel Clustering, and Vesicle Release

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Lichtmikroskop Nanometer STED-Mikroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie