Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserwelle steuert Elektronenbewegung in Molekülen

18.04.2006


Erstmals ist es einem niederländisch-deutschen Forscherteam gelungen, chemische Reaktionen über die Steuerung der Elektronenbewegung in den beteiligten Atomen zu beeinflussen


Dissoziation eines Deuterium-Moleküls. Unter dem Einfluss eines Femtosekundenpulses (rote Kurve) beginnt die Elektronenwolke (blau) zwischen den Atomkernen (grau) hin und her zu schwingen (lilafarbene Kurve). Nach einer festgelegten Zeit zerfällt das Molekül in ein Deuterium-Ion und ein neutrales Deuterium-Atom. Bild: AMOLF/Max-Planck-Institut für Quantenoptik



Ultrakurze Laserpulse im Femtosekunden-Bereich haben sich als effektive Werkzeuge bewährt, um photochemische Reaktionen kontrolliert zu steuern: Unter dem Einfluss des Lichtpulses ändern die Elektronen ihre Quantenzustände, was zum Aufbrechen einer chemischen Bindung oder auch zu ihrer Neubildung führen kann. Wissenschaftler des FOM Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, des Max-Instituts für Quantenoptik (MPQ) in Garching sowie der Universitäten Bielefeld und Hamburg sind nun einen entscheidenden Schritt weiter gekommen. Wie die Forscher in der Fachzeitschrift Science (14. April 2006) berichten, konnten sie mit "maßgeschneiderten" Wellenformen direkt die Bewegung der in die chemischen Bindungen involvierten Elektronen und damit auch das Reaktionsergebnis kontrollieren. Der hier für Dissoziation von Deuterium-Molekülen erzielte Erfolg ebnet vielleicht den Weg, auch Elektronen-Transferprozesse in großen Biomolekülen wie etwa DNA-Basenpaaren zu steuern.

... mehr zu:
»Atom »Elektron »Molekül


Erst seit kurzem verfügen Forscher über Femtosekunden-Pulse (1 Femtosekunde ist ein Millionstel von einem Milliardstel einer Sekunde) mit präzise kontrollierten Wellenformen. 2002 gelang es Prof. Ferenc Krausz (damals Technische Universität Wien, heute Direktor am Max-Planck-Institut für Quantenoptik) in Zusammenarbeit mit Prof. Theodor Hänsch (ebenfalls Direktor am MPQ), mit Hilfe der Nobelpreis-gekrönten Frequenzkammtechnik, so genannte "phasenstabilisierte" Laser zu entwickeln. Diese Laser zeichnen sich dadurch aus, dass von Puls zu Puls nicht nur Intensität und Frequenz, sondern auch die Lage der Maxima und Minima der Lichtschwingungen identisch ist.

Die hochintensiven, perfekt kontrollierten Felder solcher Femtosekundenpulse üben auf die Elektronen in einem Atom vergleichbare Kräfte aus wie der positiv geladene Atomkern. Wie Wissenschaftler um Prof. Krausz in verschiedenen Experimenten gezeigt haben, lässt sich mit solchen Pulsen die Bewegung der um die Atome kreisenden Elektronen direkt steuern, was sowohl die kontrollierte Entfernung von Elektronen aus Atomen oder Molekülen als auch die Erzeugung von Attosekunden-Pulsen (eine Attosekunde ist ein Milliardstel von einer Milliardstel Sekunde) ermöglicht. Daher stellt sich die Frage, ob man auch die Elektronen, die in Molekülen die chemische Bindung vermitteln, durch solche Pulse kontrollieren kann, und ob sich dadurch die Dynamik von chemischen Reaktionen beeinflussen lässt.

Ein Team um Dr. Matthias Kling hat nun am Max-Planck-Institut für Quantenoptik den Einfluss von linear polarisierten, fünf Femtosekunden langen Laserpulsen auf die Dissoziation, d.h. das Auseinanderbrechen von positiv geladenen Deuterium-Ionen (D2+ = schwerer Wasserstoff) untersucht. Die aus kommerziell erhältlichem D2 durch Laser-Ionisation erzeugten D2+-Ionen sind denkbar einfach aufgebaut: Sie enthalten zwei positiv geladene Kerne, die jeweils aus einem Proton und einem Neutron bestehen, und ein Elektron. Mit einem "Sensitive Imaging"-Detektor, einer Art Kamera, die eine Gruppe um Prof. Marc Vrakking am AMOLF entwickelt hatte, bestimmten die Wissenschaftler die Richtung, unter der die Molekülfragmente - ein Deuterium-Atom sowie ein positiv geladenes Deuterium-Ion - nach der Dissoziation ausgesendet wurden.

Solange sie Laserpulse ohne Phasenstabilisation verwendeten, war die Emissionsrichtung symmetrisch in Bezug auf die Polarisationsachse. Die Anwendung von Lichtpulsen, bei denen die Phase des elektrischen Lichtfeldes genau festgelegt war, führte hingegen dazu, dass die Bruchstücke - je nach Lage der gewählten Phase - bevorzugt in eine bestimmte Richtung flogen. Tatsächlich konnte die Emissionsrichtung über die Wahl der Phase gezielt gesteuert werden. Wurde die Phase so justiert, dass die Ionen nach rechts flogen (oberer Teil der Abbildung), so bewirkte eine Phasenverschiebung um 180 Grad eine Umkehrung der Emissionsrichtung, d.h. die Ionen flogen nach links (unterer Teil der Abbildung).

Quantenmechanische Rechnungen zeigten dann, dass sich dieses Phänomen folgendermaßen erklären lässt: Anfänglich ist das Elektron "delokalisiert", d.h. seine Aufenthaltswahrscheinlichkeit - symbolisiert durch die blauen Wolken in der Abbildung - erstreckt sich über beide Atomkerne, wodurch die chemische Bindung zustande kommt. Durch die Wechselwirkung mit dem Laserfeld besetzt das Elektron gleichzeitig zwei Energiezustände des D2+-Ions, im Fachjargon heißt dieser Vorgang "kohärente Überlagerung". Dies hat zur Folge, dass sich die Elektronenwolke, abhängig von der Phase des Feldes, auf der rechten oder der linken Seite der chemischen Bindung befindet.

Die Oszillation des Lichtfeldes zwingt das Elektron, zwischen beiden Seiten hin und her zu schwingen. Dadurch wird die chemische Bindung zwischen den positiv geladenen Kernen allmählich schwächer, ihr Abstand vergrößert sich, und das Molekül wird schließlich instabil. Wenn das Molekül in zwei Fragmente aufbricht, bleibt das Elektron an einem der beiden Ionen hängen, das dann zu einem neutralen D-Atom wird, während das andere Bruchstück als positiv geladenes Ion im Experiment nachgewiesen wird. Da die Dauer des Dissoziationsprozesses fest steht, lässt sich also durch Wahl der Phase des Lichtfeldes gezielt steuern, mit welchem Nukleon sich das Elektron zum Zeitpunkt des Zerfalls zusammen tut.

Elektronentransferprozesse spielen in der Chemie und Biologie eine außerordentlich wichtige Rolle. Schneller Elektronentransfer kann sowohl zur Schädigung als auch zur Reparatur von DNA-Basen-Paaren führen. Die hier für die Dissoziation von D2-Molekülen erhaltenen Resultate könnten einen Weg aufzeigen, wie sich solche Vorgänge auch in großen Biomolekülen durch elektrische Lichtfelder steuern lassen. Die Möglichkeit, den Ladungstransport gezielt durch einzelne Moleküle zu lenken, könnte auch zu einer weiteren Miniaturisierung von Bauelementen der molekularen Elektronik führen.
[OM]

Originalveröffentlichung:

M.F. Kling, Ch. Siedschlag, A.-J. Verhoef, J.I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking
Control of Electron Localization in Molecular Dissociation

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Elektron Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau