Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Astrophysiker begleiten zwei Schwarze Löcher auf dem Weg zur Verschmelzung

06.04.2006


In 325 Millionen Lichtjahren Entfernung hat sich ein ungewöhnliches Paar gefunden: Angezogen von ihren gigantischen Kräften sind zwei Schwarze Löcher unentrinnbar miteinander verbunden und jagen mit einer Geschwindigkeit von 1.200 Kilometern pro Sekunde dahin. Das düstere Schicksal der beiden steht jetzt schon fest: Irgendwann in ferner Zukunft werden die umeinander rotierenden Giganten miteinander verschmelzen. Das haben Wissenschaftler einer Emmy Noether-Gruppe der Universität Bonn mit Hilfe des NASA-Röntgensatelliten CHANDRA herausgefunden. Ihre Ergebnisse werden in der nächsten Ausgabe von "Astronomy & Astrophysics" veröffentlicht.



"Die beiden Schwarzen Löcher im Galaxienhaufen ’Abell 400’ sind bereits seit geraumer Zeit durch die Radiowellen bekannt", erzählt Dr. Thomas Reiprich, Leiter der Emmy Noether-Gruppe, "Mit dem Röntgensatelliten CHANDRA konnten wir jetzt endlich unsere Vermutung beweisen, dass sie durch die Schwerkraft aneinander gefesselt sind und irgendwann verschmelzen werden."

... mehr zu:
»Loch »Temperatur


Vereinigung der Giganten

Der Verschmelzungsprozess der Schwarzen Löcher wird jedoch frühestens in einigen Millionen Jahren stattfinden. Die beiden stehen also erst am Anfang einer langen "Beziehung", die aus drei Phasen besteht: Zunächst entsteht durch die Rotation "dynamische Reibung"; es geht Energie verloren und die beiden Schwarzen Löcher rücken näher aneinander. In der zweiten Phase, dem so genannten "Drei-Körper-Prozess", wird ein Stern angezogen, auf eine hohe Geschwindigkeit gebracht und schließlich wieder "herausgekickt" - er entzieht dem System dabei weitere Energie. Im dritten und letzten Kapitel des Beziehungsdramas schließlich werden starke Gravitationswellen frei, die aus Sicht eines Beobachters die Raumzeit stauchen und strecken: Weitere Energie geht verloren und es kommt zum Verschmelzungsprozess.

Ein Galaxienhaufen besteht aus Galaxien und sehr massivem, heißem Gas, das im Zentrum am dichtesten ist. "CHANDRA misst mit einer bisher unerreichten räumlichen Auflösung die Röntgenstrahlung, die von dem Gas ausgeht. Und diese verrät uns Temperatur, Dichte und Druck des Gases", erklärt der US-Amerikaner Dr. Daniel Hudson, der mit Hilfe von Dr. Reiprich und den amerikanischen Wissenschaftlern Tracy Clark und Craig Sarazin seine Forschungsergebnisse in der kommenden Ausgabe von "Astronomy & Astrophysics" veröffentlicht: Hudson konnte beweisen, dass das Gas relativ zur Bewegungsrichtung der Schwarzen Löcher strömt, ähnlich den Wellen hinter einem Schiff - die Schwarzen Löcher bewegen sich also zusammen in eine Richtung.

Direkt vor den Schwarzen Löchern befindet sich ein so genannter "Hot Spot"; hier ist die Temperatur des Gases am höchsten. "Vergleichen wir die Temperatur im Hot Spot mit der in der sonstigen Umgebung der Schwarzen Löcher, können wir daraus ihre Geschwindigkeit berechnen", erklärt Dr. Hudson. Ergebnis: Die Giganten rasen mit 1.200 Kilometern pro Sekunde durch "Abell 400".

Kontakt:
Dr. Thomas H. Reiprich
Argelander Institut für Anstronomie
Telefon: 0228/73-3642
E-mail: reiprich@astro.uni-bonn.de

Dr. Daniel S. Hudson
Argelander Institut für Astronomie
Telefon: 0228/73-6788
E-mail: dhudson@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Loch Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften