Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die dunkle Seite des Universums

31.03.2006


Internationales EDELWEISS II-Experiment zur Untersuchung der dunklen Materie wird im Untergrundlabor von Modane, Frankreich, aufgebaut

... mehr zu:
»Detektor »Detektoren »Materie »WIMP

Das Universum ist nach heutigem Erkenntnisstand nur zu einem kleinen Teil für uns sichtbar. Der größte Anteil seiner Masse besteht aus so genannter dunkler Energie und dunkler Materie. Der Untersuchung der dunklen Materie dient das Experiment EDELWEISS II, das zurzeit von einer internationalen Wissenschaftlergruppe in einem Untergrundlabor in den französischen Alpen aufgebaut wird. EDELWEISS II wird am 31. März 2006 eingeweiht.

Die Messungen aus Rotationskurven von Galaxien und der Expansionsrate des Universums legen nahe, dass wir nur einen kleinen Teil der Materie im Kosmos sehen: rund 4 % bilden die sichtbare Materie, aus der die Sonnen der Galaxien bestehen. Der große Rest ist für uns nicht direkt sichtbar und besteht aus dunkler Energie (rund 73 %) und dunkler Materie (rund 23 %). Diese dunkle Materie kann aus sehr leichten Teilchen, beispielsweise Neutrinos, oder aus sehr massereichen, noch unbekannten neuen Teilchen bestehen. So wird im Forschungszentrum Karlsruhe gerade das Experiment KATRIN aufgebaut, um zu klären, wie groß die Masse der Neutrinos ist. Der vermutlich deutlich größere Anteil der dunklen Materie wird jedoch den so genannten WIMPs zugeschrieben. WIMPs (Weakly Interacting Massive Particles = schwach wechselwirkende schwere Partikel) sind geheimnisvolle und bisher spekulative Partikel, die von Modellen der Elementarteilchenphysik vorhergesagt werden und die sich in unserer Milchstraße in großer Anzahl befinden sollten. In einem Untergrundlabor in den französischen Alpen gehen Wissenschaftler aus Frankreich, Deutschland und Russland mit dem Experiment "EDELWEISS II" auf die Suche nach diesen galaktischen WIMPs.


Die Detektoren bestehen aus hochreinen Germaniumkristallen und werden fast auf den absoluten Nullpunkt (auf 0,02 Kelvin, entsprechend -273,13° Celsius) abgekühlt. In diesen Detektoren - so genannten Bolometern - müsste gelegentlich ein WIMP mit einem Germanium-Atomkern zusammenstoßen. Die dabei freiwerdende Energie versetzt den Germaniumkristall in Schwingung; dies löst eine geringe, aber messbare Temperaturerhöhung aus. Außerdem werden durch den Rückstoß des Germaniumkerns elektrische Ladungen erzeugt, die gleichzeitig gemessen werden.

Die erwarteten Zählraten sind äußerst gering (eventuell nur einige Ereignisse pro Jahr und Kilogramm Detektormaterial). Deshalb müssen die Wissenschaftler sehr viel Aufwand betreiben, um unerwünschte Störsignale auszuschließen. EDELWEISS II (EDELWEISS steht für Expérience pour DEtecter Les WIMPs En Site Souterrain) entsteht tief unter der Erde, in einer Experimentierhalle des Untergrundlabors von Modane im Frejus-Tunnel in den französischen Alpen. Hier schirmen 1700 Meter Gestein den größten Teil der kosmischen Strahlen ab.

"Was von der kosmischen Strahlung im Untergrund noch übrig bleibt - weniger als ein Millionstel aller Myonen, die an der Erdoberfläche ankommen - wird von einem 100 m2 großen System von Detektoren des Forschungszentrums Karlsruhe aufgespürt und kann die Messungen nicht mehr stören", erklärt Dr. Klaus Eitel, der im Institut für Kernphysik des Forschungszentrums Karlsruhe für dieses Experiment verantwortlich ist. "Andere Strahlung, die aus dem umliegenden Gestein kommt, wird durch massive Blei- und Polyethylenplatten abgeschirmt. Außerdem haben wir für alle kritischen Bauteile des Experiments Materialien mit extrem niedriger Radioaktivität ausgewählt."

Das Herzstück des Experiments ist ein Kryostat mit 100 Litern Volumen, der die Germaniumdetektoren auf einer Temperatur von 0,02 Kelvin hält. Derzeit ist er mit 8 Bolometern bestückt, in der ersten Jahreshälfte wird die erste Ausbaustufe mit 28 Bolometern vollendet werden. Ab 2007 soll die Anzahl der Detektoren um weitere 90 steigen. Mit einer Gesamtmasse von dann 30 kg Germanium steigert das EDELWEISS II-Experiment die Sensitivität für den Nachweis von WIMPs um einen Faktor 100 und kann damit viele Modellvorhersagen der Elementarteilchenphysik überprüfen.

Die EDELWEISS-Kollaboration besteht aus sechs französischen Forschergruppen, einem russischen Team, dem Forschungszentrum Karlsruhe sowie der Universität Karlsruhe. Sie bringt Spezialisten sehr unterschiedlicher Disziplinen wie Elementarteilchenphysik, Festkörperphysik, Astrophysik und Tieftemperaturphysik zusammen. Das Vorläufer-Experiment (EDELWEISS I) konnte bis 2002 die bis dahin sensitivste Suche nach dunkler Materie durchführen und dabei zeigen, dass die eingesetzte Technik, die nun Basis des EDELWEISS II-Experimentes ist, die Erwartungen erfüllte.

Die Arbeiten werden unterstützt durch das Virtuelle Institut für Dunkle Materie und Neutrinos VIDMAN, das aus dem Impuls- und Vernetzungsfond der Helmholtz-Gemeinschaft gefördert wird.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Inge Arnold | idw
Weitere Informationen:
http://www.fzk.de

Weitere Berichte zu: Detektor Detektoren Materie WIMP

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics