Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefesselte Elektronen

27.03.2006


Max-Planck Wissenschaftler beweisen, dass Elektronen Zustände oberhalb des Vakuum-Niveaus besetzen.


Die linke Abbildung, zeigt die Messergebnisse der Physiker am Max-Planck-Institut für Mikrostrukturphysik: Die Peaks in ihren Messungen bilden einen Teil der energetischen Zustände ab, in denen sich Elektronen befinden. Rechts von der gestrichelten Linie (mit ATP - Above Threshold Photoemission) sollten sie sich eigentlich aus dem Festkörper lösen. Dass auch dort Signale zu beobachten sind, zeigt: Die Elektronen besetzen Zustände oberhalb des Vakuum-Niveaus. Die rechte Abbildung zeigt die Ergebnisse der Messungen schematisch. IP n = 1 und IP n = 2 kennzeichnen die Zustände, in denen die Elektronen frei sind, aber immer noch Kontakt zum Metall halten. Die senkrechten Linien stellen Anregungen jeweils eines Elektrons durch mehrere Photonen in Zustände dar, in denen sie sich völlig vom Metall gelöst haben (ATP). Bild: Max-Planck-Institut für Mikrostrukturphysik



Wenn Saudi-Arabien Fußballweltmeister wird, ist das eine Sensation. Für noch mehr Aufregung aber könnte in dem Turnier eine schlichte Flanke, sagen wir von Michael Ballack, sorgen - wenn der Ball einige Zentimeter von seiner Fussspitze entfernt in der Luft hängen bliebe, heftig auf und ab zitterte, und erst nach einem weiteren Tritt über den Platz fegte. In der Quantenwelt ist so etwas möglich: Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle haben Elektronen in einem Kupferplättchen jetzt mit Laserlicht einen Kick gegeben, so dass sie ins Vakuum hätten sausen müssen. Als seien sie gefesselt konnten sie sich aber nicht aus dem Metall lösen. Für einige Elektronen könnte das zum Beispiel bedeuten, dass sie knapp über der Metall-Oberfläche schweben. Damit haben die Physiker bewiesen, dass sich Elektronen tatsächlich in Zuständen aufhalten, die sie bislang nur für virtuell hielten. Ganz nebenbei erweitern die Forscher mit ihren Experimenten Einsteins nobelpreisgekrönte Theorie der Photoemission. (Physical Review Letters, 3. März 2006)

... mehr zu:
»Elektron »Laser »Physik


Auf Computerchips, Laser und Neonröhren müssten wir heute verzichten, wenn Physiker nicht die elektronischen Eigenschaften der Stoffe erforscht hätten, die sie in der Natur finden oder in Labors herstellen. Dabei gehen sie immer der Frage nach, wo sich die Elektronen in diesen Substanzen aufhalten oder, physikalisch gesprochen, mit welcher Energie sie um die Atomkerne schwirren - und wie sie ihnen einen energetischen Schub verpassen können. In Metallen bedienen sich die Wissenschaftler dafür gerne der Photoelektronen-Spektroskopie. Die Methode beruht auf der Theorie, für die Albert Einstein 1921 den Nobelpreis erhielt. Demnach kann ein Lichtstrahl ein Elektron nur aus einem Festkörper lösen, wenn er eine bestimmte Farbe, sprich mindestens eine bestimmte Energie, hat.

Selbst einem so gut untersuchten Metall wie Kupfer können Physiker damit heute noch Geheimnisse entlocken. Francesco Bisio und Miroslav Nývlt, Gastforscher am Max-Planck-Institut für Mikrostrukturphysik in Halle, haben jetzt in einem Kupferplättchen Elektronen in Zuständen beobachtet, die sie bislang nur für mathematische Konstrukte der Quantentheorie hielten. Diese Zustände liegen oberhalb des Vakuumniveaus - jener Energie, die ein Elektron mindestens braucht, um dem Metallgitter zu entkommen und in die Freiheit zu sausen. Die Elektronen entwischten aber nicht, sondern blieben an das Metall gefesselt.

"Meine beiden Kollegen haben jetzt gezeigt, dass diese Zustände nicht nur virtuell, sondern real sind - wenn auch sehr kurzlebig", sagt Jürgen Kirschner, Direktor am Max-Planck-Institut in Halle und Leiter der Gruppe, in der Bisio und Nyvlt gearbeitet haben. Dass Elektronen tatsächlich auch solche ungewöhnlichen Zustände annehmen, hat mit einer Eigenheit der Quantentheorie zu tun: In ihr ist beinahe alles möglich - auch dass Michael Ballacks Fuß den Ball nicht los wird oder Saudi-Arabien die Weltmeisterschaft gewinnt. Allerdings: Die Wahrscheinlichkeit für viele denkbare Ereignisse ist nur verschwindend klein. So auch dafür, dass Physiker Elektronen ins energetische Nirgendwo befördern können. Ob sie das schaffen, hängt auch davon ab, mit wie vielen Photonen sie die Elektronen befeuern, wie oft sie ihnen also einen Kick verpassen.

Ist die Zahl der Photonen, also die Intensität des eingestrahlten Lichtes, nur groß genug, interagieren einige Photonen auch so mit den Elektronen, dass diese in einem Zustand landen, in dem sie dem Metall eigentlich entwischen müssten - aber doch nicht loskommen. Genau diese Erkenntnis kollidiert mit Einsteins Theorie des Photoeffekts. Einstein stellte nämlich fest, dass nur die Farbe (entsprechend die Energie) des Lichts und nicht seine Intensität darüber entscheidet, ob es Elektronen aus einem Metall katapultieren kann. Albert Einstein kannte jedoch noch keine Laser. Sie liefern Lichtpulse von so hoher Intensität, dass Phänomene auftreten, die Physiker Effekte höherer Ordnung oder nichtlineare Effekte nennen.

Pikanterweise verwenden die Hallenser Physiker Laserlicht, dessen Energie nach Einstein nicht ausreicht, um ein Photon aus dem Kupfer zu schlagen. Die Elektronen fangen aber mehrere Photonen gleichzeitig ein und sammeln so die nötige Energie, um dem Metall zu entwischen. Dieses Phänomen ist sehr unwahrscheinlich. Francesco Bisio und Miroslav Nyvlt konnten es nur beobachten, weil sie sehr intensive Lichtpulse einstrahlten. "Ein kurioser Gedanke: Nichtlineare Effekte der Quantentheorie ermöglichen Phänomene, die die klassische Physik als lineare Effekte darstellte und die seit Einstein und Planck als physikalische Unmöglichkeit gelten", sagt Kirschner.

Neben der hohen Intensität nutzten Bisio und Nyvlt einen Trick: Sie ballerten nicht wahllos mit dem Laser auf die Kupferoberfläche; vielmehr wählten sie sorgfältig den Winkel, in dem sie die Lichtwellen auf das Metall treffen ließen. Entscheidend war dabei die Schwingungsrichtung des Lichts, dessen Wellen in einem Laser alle parallel laufen. Erreichten die Lichtwellen das Kupfer in einem bestimmten Winkel, gaben sie den Elektronen zwar einen kräftigen Schub. Der beschleunigte die Elektronen aber nicht von der Metalloberfläche weg, sondern parallel zu ihr. Die Elektronen bewegten sich also heftig, jedoch nur in einer Ebene über dem Kupferplättchen. Um im Bild zu bleiben: Michael Ballack muss sich nicht wundern, wenn seine Flanke seinen Kollegen Miroslav Klose nicht erreicht, wenn er in den Himmel über dem Stadion schießt.

Originalveröffentlichung:

Francesco Bisio, Miroslav Nývlt, Jiri Franta, Hrvoye Petek und Jürgen Kirschner
Mechanisms of High-Order Pertubative Photoemission from Cu(001)
Physical Review Letters, 3 February 2006-03-24

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Elektron Laser Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie