Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser helfen bei photodynamischer Krebstherapie

22.03.2006


FBH stellt Neuentwicklungen auf der Laser-Optik-Berlin 2006 vor



Krebszellen gezielt ausschalten, ohne angrenzendes Gewebe zu schädigen: Ein Ideal, das klassische Krebs-Behandlungsmethoden wie Chemotherapie oder Operation nicht immer erreichen. Die photodynamische Krebstherapie dagegen kommt diesem Ziel nahe. Für die Behandlungsmethode hat das Berliner Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) neuartige Diodenlaser im roten Spektralbereich mit exakter Wellenlänge entwickelt. Diese Laser und weitere aktuelle Entwicklungen stellt das FBH auf der Fachmesse Laser-Optik-Berlin 2006 (LOB) am 23. und 24. März in Adlershof vor.



Laser für medizinische Anwendungen

Für einen Medizintechnikhersteller hat das Leibniz-Institut Diodenlaser im roten Spektralbereich entwickelt. Diese Neuentwicklung für die photodynamische Krebstherapie bietet bei einer Wellenlänge von 650 Nanometern (nm) optische Ausgangsleistungen mit bislang unerreichter Lebensdauer: 500 Milliwatt für Einzellaser und 5 Watt für Laserbarren. Bei der photodynamischen Krebstherapie wird eine lichtempfindliche Substanz in den befallenen Zellen angereichert. Der Wirkstoff wird aktiviert, wenn er mit Laserlicht genau dieser Wellenlänge angestrahlt wird. Durch die selektive Anreicherung und die lokale Beleuchtung wird der exakte Ort der Behandlung bestimmt und kontrolliert. Das reduziert die Nebenwirkungen auf ein Minimum.

Halbleiterlaser aus dem FBH sind klein, leistungsstark, präzise und äußerst zuverlässig. Damit bieten sie optimale Voraussetzungen für kleine und wartungsarme Systeme. Das macht sie für weitere Anwendungen in der Medizintechnik interessant, beispielsweise bei der Wunddesinfektion oder zur Behandlung von Zahnfleischerkrankungen. Dieser Lasertyp eignet sich auch für die Displaytechnologie und soll als hocheffiziente Lichtquelle künftig Lampen in Projektoren ersetzen.

Weitere Informationen

Petra Immerz, M.A.
Referentin Kommunikation & Marketing

Ferdinand-Braun-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de

Hintergrundinformationen

Laser für verschiedene Anwendungen

Das FBH entwickelt verschiedene Lasertypen. Je nach den spezifischen Leistungsmerkmalen eignen sie sich für den Einsatz in der Medizintechnik, Materialbearbeitung und der Lasertechnologie bis hin zur Präzisionsmesstechnik.

Die Einzelbreitstreifenlaser und Laserbarren zeichnen sich durch hohe Effizienz und Leistungen mit hervorragender Zuverlässigkeit aus. Für die Wellenlänge von 940 nm liegen die Spitzenleistungen bei 20 Watt für den Einzellaser und 100 Watt für Laserbarren. Mit 73 Prozent Effizienz erreichen sie internationale Rekordwerte.

Rippenwellenleiter-Laser (RW) und Trapezlaser kommen zum Einsatz, wenn neben der hohen optischen Leistung die Brillanz der Laserstrahlung eine entscheidende Rolle spielt. Sie besitzen eine hervorragende Strahlqualität mit nahezu gaußförmiger Feldverteilung und eignen sich unter anderem für Anwendungen in der Medizintechnik und Materialbearbeitung. Bei Wellenlängen von 730 nm bis 1160 nm liefern Trapezlaser Ausgangsleistungen im einstelligen Wattbereich.

Ist eine hohe Wellenlängenstabilität gefragt, wie bei Anwendungen in der Spektroskopie und der Messtechnik, werden Distributed Feedback (DFB) und Distributed Bragg Reflector (DBR) Laser genutzt. Das FBH setzt dazu seine selbst entwickelte, patentierte Schichttechnologie ein. Diese ermöglicht eine extrem hohe Wellenlängenstabilität mit einer Genauigkeit von 1:10-8. Für höhere Leistungen werden hybrid integrierte Systeme aus Oszillator und Verstärker (MOPA - Master Oszillator Power Amplifier) aufgebaut.


Das Ferdinand-Braun-Institut für Höchstfrequenztechnik ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Auf der Basis von III/V-Verbindungshalbleitern realisiert es Hochfrequenz-Bauelemente und Schaltungen für Anwendungen in der Kommunikationstechnik und Sensorik. Leistungsstarke und hochbrillante Diodenlaser entwickelt das Institut für die Materialbearbeitung, Lasertechnologie, Medizintechnik und Präzisionsmesstechnik. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 160 Mitarbeiter und hat einen Etat von 14 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz, M.A. | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Berichte zu: FBH Krebstherapie Laser Medizintechnik Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten