Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser helfen bei photodynamischer Krebstherapie

22.03.2006


FBH stellt Neuentwicklungen auf der Laser-Optik-Berlin 2006 vor



Krebszellen gezielt ausschalten, ohne angrenzendes Gewebe zu schädigen: Ein Ideal, das klassische Krebs-Behandlungsmethoden wie Chemotherapie oder Operation nicht immer erreichen. Die photodynamische Krebstherapie dagegen kommt diesem Ziel nahe. Für die Behandlungsmethode hat das Berliner Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) neuartige Diodenlaser im roten Spektralbereich mit exakter Wellenlänge entwickelt. Diese Laser und weitere aktuelle Entwicklungen stellt das FBH auf der Fachmesse Laser-Optik-Berlin 2006 (LOB) am 23. und 24. März in Adlershof vor.



Laser für medizinische Anwendungen

Für einen Medizintechnikhersteller hat das Leibniz-Institut Diodenlaser im roten Spektralbereich entwickelt. Diese Neuentwicklung für die photodynamische Krebstherapie bietet bei einer Wellenlänge von 650 Nanometern (nm) optische Ausgangsleistungen mit bislang unerreichter Lebensdauer: 500 Milliwatt für Einzellaser und 5 Watt für Laserbarren. Bei der photodynamischen Krebstherapie wird eine lichtempfindliche Substanz in den befallenen Zellen angereichert. Der Wirkstoff wird aktiviert, wenn er mit Laserlicht genau dieser Wellenlänge angestrahlt wird. Durch die selektive Anreicherung und die lokale Beleuchtung wird der exakte Ort der Behandlung bestimmt und kontrolliert. Das reduziert die Nebenwirkungen auf ein Minimum.

Halbleiterlaser aus dem FBH sind klein, leistungsstark, präzise und äußerst zuverlässig. Damit bieten sie optimale Voraussetzungen für kleine und wartungsarme Systeme. Das macht sie für weitere Anwendungen in der Medizintechnik interessant, beispielsweise bei der Wunddesinfektion oder zur Behandlung von Zahnfleischerkrankungen. Dieser Lasertyp eignet sich auch für die Displaytechnologie und soll als hocheffiziente Lichtquelle künftig Lampen in Projektoren ersetzen.

Weitere Informationen

Petra Immerz, M.A.
Referentin Kommunikation & Marketing

Ferdinand-Braun-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de

Hintergrundinformationen

Laser für verschiedene Anwendungen

Das FBH entwickelt verschiedene Lasertypen. Je nach den spezifischen Leistungsmerkmalen eignen sie sich für den Einsatz in der Medizintechnik, Materialbearbeitung und der Lasertechnologie bis hin zur Präzisionsmesstechnik.

Die Einzelbreitstreifenlaser und Laserbarren zeichnen sich durch hohe Effizienz und Leistungen mit hervorragender Zuverlässigkeit aus. Für die Wellenlänge von 940 nm liegen die Spitzenleistungen bei 20 Watt für den Einzellaser und 100 Watt für Laserbarren. Mit 73 Prozent Effizienz erreichen sie internationale Rekordwerte.

Rippenwellenleiter-Laser (RW) und Trapezlaser kommen zum Einsatz, wenn neben der hohen optischen Leistung die Brillanz der Laserstrahlung eine entscheidende Rolle spielt. Sie besitzen eine hervorragende Strahlqualität mit nahezu gaußförmiger Feldverteilung und eignen sich unter anderem für Anwendungen in der Medizintechnik und Materialbearbeitung. Bei Wellenlängen von 730 nm bis 1160 nm liefern Trapezlaser Ausgangsleistungen im einstelligen Wattbereich.

Ist eine hohe Wellenlängenstabilität gefragt, wie bei Anwendungen in der Spektroskopie und der Messtechnik, werden Distributed Feedback (DFB) und Distributed Bragg Reflector (DBR) Laser genutzt. Das FBH setzt dazu seine selbst entwickelte, patentierte Schichttechnologie ein. Diese ermöglicht eine extrem hohe Wellenlängenstabilität mit einer Genauigkeit von 1:10-8. Für höhere Leistungen werden hybrid integrierte Systeme aus Oszillator und Verstärker (MOPA - Master Oszillator Power Amplifier) aufgebaut.


Das Ferdinand-Braun-Institut für Höchstfrequenztechnik ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Auf der Basis von III/V-Verbindungshalbleitern realisiert es Hochfrequenz-Bauelemente und Schaltungen für Anwendungen in der Kommunikationstechnik und Sensorik. Leistungsstarke und hochbrillante Diodenlaser entwickelt das Institut für die Materialbearbeitung, Lasertechnologie, Medizintechnik und Präzisionsmesstechnik. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 160 Mitarbeiter und hat einen Etat von 14 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz, M.A. | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Berichte zu: FBH Krebstherapie Laser Medizintechnik Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften