Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine Langeweile bei Potsdamer Sonnenforschern trotz Minimum an Sonnenflecken

21.03.2006


RHESSI-Mission der NASA bis 2008 abgesichert


Darstellung eines Künstlers: RHESSI in der Erdumlaufbahn. NASA


Ein besonders starker Sonnenflare vom 28.Oktober 2003. Das grüne Bild ist eine Aufnahme im extremen UV-Licht vom Satelliten TRACE. Die darübergeplotteten Konturen zeigen die von RHESSI beobachteten Röntgenquellen. Die rote Quelle stammt von einem Plasma mit einer Temperatur von 35 Millionen Grad, während die blauen Quellen von hochenergetischen Elektronen produziert werden. AIP



Der 11jährige Zyklus der Sonnenaktivität befindet sich derzeit im Minimum. Es gibt zur Zeit wenige Sonnenflecken und Eruptionen. Wer aber denkt, dass Astronomen, die sich mit der Erforschung der Sonne befassen, nun eine lange Urlaubszeit von etwa vier Jahren einlegen, hat sich geirrt. Denn schon eine einzige aktive Region bietet sehr viele komplexe Phänomene, die jetzt sehr gut beobachtet werden können. Sonnenforscher Alexander Warmuth vom Astrophysikalischen Institut Potsdam ergänzt: "Gerade im Minimum finden nicht selten die interessantesten Ereignisse statt. Wir können sie besser analysieren, weil unsere Beobachtungen nicht durch andere, gleichzeitig stattfindende Prozesse gestört werden. Außerdem haben sich in den letzten, sehr aktiven Jahren viele Daten angesammelt, die jetzt ausgewertet werden müssen".



Eine gute Möglichkeit zur Gewinnung von Sonnendaten bietet RHESSI, eine Weltraummission der NASA, an der die Sonnenforscher des Astrophysikalischen Instituts Potsdam beteiligt sind. Und hier gibt es Grund zur Freude, denn die NASA hat die RHESSI-Mission bei ihrer Evaluierung, bei der über die Zukunft aller derzeit laufenden Missionen entschieden wird, mit der höchsten Punktzahl bewertet. Damit ist die Mission bis April 2008 abgesichert, und die Sonnenforscher des AIP werden dabei sein.

Das Röntgen-Weltraumspektroskop RHESSI soll die physikalischen Grundlagen der Partikelbeschleunigung in Sonneneruptionen, den sogenannten Flares, erforschen. Flares sind Strahlungsausbrüche, bei denen in weniger als einer Stunde soviel Energie freigesetzt wird, dass man damit den Gesamtbedarf der Menschheit für 100.000 Jahre decken könnte. Mit Hilfe von Spektren und Bildern im Röntgenbereich lassen sich Rückschlüsse auf die Teilchenbeschleunigung auf der Sonne anstellen. Das ist für das Verständnis der Sonnenflares von entscheidender Bedeutung, da dabei ein Großteil der freiwerdenden Energie in hochenergetische Teilchen wie Elektronen und Protonen gesteckt wird.

Die praktische Relevanz der Forschung liegt in der Untersuchung der Sonnenaktivität und deren Einfluss auf den Menschen und die Erde. Dieses als "Weltraumwetter" bezeichnete Forschungsgebiet befasst sich insbesondere mit den Auswirkungen der Sonnenaktivität auf technische Systeme wie z.B. Navigations- und Kommunikationssatelliten oder Stromnetze. Die zunehmende Abhängigkeit unserer technisierten Gesellschaft von solchen Einrichtungen wird die Bedeutung der Sonnenforschung in Zukunft weiter erhöhen.

Shehan Bonatz | idw
Weitere Informationen:
http://www.aip.de

Weitere Berichte zu: Sonnenaktivität Sonnenfleck Sonnenforscher

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics