Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der weltgrößte Kameraverschluss reist nach Hawaii

21.03.2006


Astronomen und technische Mitarbeiter am Argelander-Institut für Astronomie der Universität Bonn und am institutseigenen Observatorium "Hoher List" haben einen ungewöhnlich großen Präzisionsverschluss für eine astronomische Riesenkamera entwickelt. Astronomen auf Hawaii werden diesen Verschluss, dessen Öffnung knapp einen halben Meter im Quadrat misst, in ihrer Pan-STARRS Kamera einsetzen - das ist mit einer Auflösung von 1.400.000.000 Pixeln (1.400 Megapixel!) die größte Digitalkamera, die jemals gebaut wurde. Ein Team von Astronomen will mit ihr auf die Jagd nach Asteroiden gehen, die der Erde bedrohlich nahe kommen könnten. Um sie zu finden und ihre Bewegung zu verfolgen, müssen möglichst große Himmelsareale wiederholt und in rascher Folge aufgenommen werden. Deshalb wurde die Kamera so groß gewählt wie technisch machbar.



Zu dem riesigen Detektorfeld wünschte sich das Team am Institute for Astronomy der University of Hawaii einen "Bonn Shutter" ("shutter" ist die englische Übersetzung für "Kameraverschluss") aus dem Argelander-Institut, und das aus gutem Grund: Die Instrumentierungsgruppe dort ist auf den Bau von astronomischen Kameras und Kamerazubehör spezialisiert. Sie hat sich in den vergangenen Jahren international gerade durch die Konstruktion großer, hochpräziser Kameraverschlüsse einen Namen gemacht. Verschlüsse unterschiedlichster Größe wurden bereits entwickelt, für Kameras an Teleskopen von zwei bis zehn Metern Durchmesser - in Andalusien, La Palma, Arizona und an der Europäischen Südsternwarte in Chile. Schon der kleinste dieser Verschlüsse ist mit einer Öffnung von 11cm x 11cm immerhin 15mal größer als der einer Kleinbildkamera. Das neue Exemplar ist das größte, das vom Team um Dr. Klaus Reif bislang gebaut wurde. In den ersten Februartagen hat es seine Reise nach Hawaii angetreten. Dort ist es bereits erfolgreich getestet worden.



Jeder Fotograf und Fotoamateur hat übrigens einen ähnlichen Verschluss vor Augen, wenn er einen Film in seiner Spiegelreflex-Kamera wechselt: Eine kleine viereckige Öffnung unmittelbar vor der Filmebene, die mit einer Metall-, Kunststoff- oder Textillamelle verschlossen ist. Bei einer Belichtung wird diese Lamelle von einer Feder blitzschnell von der Öffnung gezogen, um die Filmebene freizugeben, und anschließend eine zweite Lamelle wieder in die Öffnung gezogen, um sie zu verschließen. Bei sehr kurzen Belichtungen folgt die zweite Lamelle, noch bevor die erste ganz verschwunden ist: Es entsteht ein sich bewegener Schlitz. Daher der Name "Schlitzverschluss".

Dieses Schlitzverschlussprinzip ist auch die Grundlage der "Bonn Shutter". Damit erschöpfen sich aber auch schon die Ähnlichkeiten mit einer konventionellen Kamera. Das liegt nicht alleine an der schieren Größe, sondern vor allem an den hohen technischen Anforderungen. Bei der Asteroidensuche werden im Verlaufe von Jahren von einigen Hunderttausend bis zu mehreren Millionen Aufnahmen gemacht. Und das soll der Verschluss nicht nur irgendwie überleben, sondern er muss seine Qualität unverändert behalten.

Denn eine astronomische Kamera liefert nicht einfach nur Bilder. Sie ist vor allem ein Präzisionsmessinstrument zur Bestimmung von Helligkeiten. Jedes einzelne Pixel misst die dort auftreffende Anzahl von Lichtteilchen, den Photonen. Damit das exakt klappt, müssen die Belichtungszeiten ganz präzise eingehalten werden, und das an jeder Stelle der Detektorfläche - sozusagen für jedes einzelne Pixel. Astronomen sprechen von Belichtungshomogenität. Die Arbeitsgruppe am Argelander-Institut hat erreicht, dass die Belichtungszeiten für beliebige Pixel in der 48cm x 48cm großen Öffnung um weniger als eine tausendstel Sekunde voneinander abweichen. Dazu wurde neben der präzise gefertigten Verschlussmechanik ein mikroprozessorgesteuertes Antriebsverfahren entwickelt. Diese Kombination stellt sicher, dass die Bewegung der motorgetriebenen Verschlusslamellen mit der geforderten Genauigkeit abläuft. Und das muss auch in gut 3.000 Metern Höhe bei frostigen Temperaturen absolut zuverlässig funktionieren. Zudem werden die Lamellen in weniger als einer Sekunde über die komplette Verschlussöffnung bewegt. Dazu müssen sie besonders leicht sein. Schließlich blieb wieder nur eine Eigenentwicklung: Eine mehrlagige "Sandwich"-Struktur, wie sie im Flugzeug- und Rennwagenbau üblich ist.

Die gleichzeitige Beherrschung der drei Bereiche Präzisionsmechanik, modernste Elektronik und Software sind die besondere Stärke des Teams um Dr. Klaus Reif. Zusammen mit der langjährigen Erfahrung beim Betrieb des Observatoriums "Hoher List" mit seinen sechs Teleskopen und bei der Neuentwicklung von Teleskopinstrumentierungen sind sie die Grundlage für den Erfolg. Und die Nachfrage nach "Bonn Shutter" hält an. Zur Zeit ist bereits ein weiterer großer Kameraverschluss für ein australisches Teleskop in Arbeit. Daneben kam aus den USA die Anfrage nach dem bisher größten Exemplar mit einer Öffnung von 50cm x 50cm. Die dazugehörige Kamera hört auf den vielsagenden Namen DarkEnergyCamera. Sie wird für ein Vier-Meter-Teleskop in Chile entwickelt. Von der Auswertung der Aufnahmen dieser Kamera erhofft man sich entscheidende Fortschritte bei der Beantwortung der Frage: Was ist die "Dunkle Energie"?

Kontakt:
Dr. Klaus Reif
Argelander-Institut für Astronomie
Telefon: 0228/73-7834
E-Mail: reif@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Astronom Kameraverschluss Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie