Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der weltgrößte Kameraverschluss reist nach Hawaii

21.03.2006


Astronomen und technische Mitarbeiter am Argelander-Institut für Astronomie der Universität Bonn und am institutseigenen Observatorium "Hoher List" haben einen ungewöhnlich großen Präzisionsverschluss für eine astronomische Riesenkamera entwickelt. Astronomen auf Hawaii werden diesen Verschluss, dessen Öffnung knapp einen halben Meter im Quadrat misst, in ihrer Pan-STARRS Kamera einsetzen - das ist mit einer Auflösung von 1.400.000.000 Pixeln (1.400 Megapixel!) die größte Digitalkamera, die jemals gebaut wurde. Ein Team von Astronomen will mit ihr auf die Jagd nach Asteroiden gehen, die der Erde bedrohlich nahe kommen könnten. Um sie zu finden und ihre Bewegung zu verfolgen, müssen möglichst große Himmelsareale wiederholt und in rascher Folge aufgenommen werden. Deshalb wurde die Kamera so groß gewählt wie technisch machbar.



Zu dem riesigen Detektorfeld wünschte sich das Team am Institute for Astronomy der University of Hawaii einen "Bonn Shutter" ("shutter" ist die englische Übersetzung für "Kameraverschluss") aus dem Argelander-Institut, und das aus gutem Grund: Die Instrumentierungsgruppe dort ist auf den Bau von astronomischen Kameras und Kamerazubehör spezialisiert. Sie hat sich in den vergangenen Jahren international gerade durch die Konstruktion großer, hochpräziser Kameraverschlüsse einen Namen gemacht. Verschlüsse unterschiedlichster Größe wurden bereits entwickelt, für Kameras an Teleskopen von zwei bis zehn Metern Durchmesser - in Andalusien, La Palma, Arizona und an der Europäischen Südsternwarte in Chile. Schon der kleinste dieser Verschlüsse ist mit einer Öffnung von 11cm x 11cm immerhin 15mal größer als der einer Kleinbildkamera. Das neue Exemplar ist das größte, das vom Team um Dr. Klaus Reif bislang gebaut wurde. In den ersten Februartagen hat es seine Reise nach Hawaii angetreten. Dort ist es bereits erfolgreich getestet worden.



Jeder Fotograf und Fotoamateur hat übrigens einen ähnlichen Verschluss vor Augen, wenn er einen Film in seiner Spiegelreflex-Kamera wechselt: Eine kleine viereckige Öffnung unmittelbar vor der Filmebene, die mit einer Metall-, Kunststoff- oder Textillamelle verschlossen ist. Bei einer Belichtung wird diese Lamelle von einer Feder blitzschnell von der Öffnung gezogen, um die Filmebene freizugeben, und anschließend eine zweite Lamelle wieder in die Öffnung gezogen, um sie zu verschließen. Bei sehr kurzen Belichtungen folgt die zweite Lamelle, noch bevor die erste ganz verschwunden ist: Es entsteht ein sich bewegener Schlitz. Daher der Name "Schlitzverschluss".

Dieses Schlitzverschlussprinzip ist auch die Grundlage der "Bonn Shutter". Damit erschöpfen sich aber auch schon die Ähnlichkeiten mit einer konventionellen Kamera. Das liegt nicht alleine an der schieren Größe, sondern vor allem an den hohen technischen Anforderungen. Bei der Asteroidensuche werden im Verlaufe von Jahren von einigen Hunderttausend bis zu mehreren Millionen Aufnahmen gemacht. Und das soll der Verschluss nicht nur irgendwie überleben, sondern er muss seine Qualität unverändert behalten.

Denn eine astronomische Kamera liefert nicht einfach nur Bilder. Sie ist vor allem ein Präzisionsmessinstrument zur Bestimmung von Helligkeiten. Jedes einzelne Pixel misst die dort auftreffende Anzahl von Lichtteilchen, den Photonen. Damit das exakt klappt, müssen die Belichtungszeiten ganz präzise eingehalten werden, und das an jeder Stelle der Detektorfläche - sozusagen für jedes einzelne Pixel. Astronomen sprechen von Belichtungshomogenität. Die Arbeitsgruppe am Argelander-Institut hat erreicht, dass die Belichtungszeiten für beliebige Pixel in der 48cm x 48cm großen Öffnung um weniger als eine tausendstel Sekunde voneinander abweichen. Dazu wurde neben der präzise gefertigten Verschlussmechanik ein mikroprozessorgesteuertes Antriebsverfahren entwickelt. Diese Kombination stellt sicher, dass die Bewegung der motorgetriebenen Verschlusslamellen mit der geforderten Genauigkeit abläuft. Und das muss auch in gut 3.000 Metern Höhe bei frostigen Temperaturen absolut zuverlässig funktionieren. Zudem werden die Lamellen in weniger als einer Sekunde über die komplette Verschlussöffnung bewegt. Dazu müssen sie besonders leicht sein. Schließlich blieb wieder nur eine Eigenentwicklung: Eine mehrlagige "Sandwich"-Struktur, wie sie im Flugzeug- und Rennwagenbau üblich ist.

Die gleichzeitige Beherrschung der drei Bereiche Präzisionsmechanik, modernste Elektronik und Software sind die besondere Stärke des Teams um Dr. Klaus Reif. Zusammen mit der langjährigen Erfahrung beim Betrieb des Observatoriums "Hoher List" mit seinen sechs Teleskopen und bei der Neuentwicklung von Teleskopinstrumentierungen sind sie die Grundlage für den Erfolg. Und die Nachfrage nach "Bonn Shutter" hält an. Zur Zeit ist bereits ein weiterer großer Kameraverschluss für ein australisches Teleskop in Arbeit. Daneben kam aus den USA die Anfrage nach dem bisher größten Exemplar mit einer Öffnung von 50cm x 50cm. Die dazugehörige Kamera hört auf den vielsagenden Namen DarkEnergyCamera. Sie wird für ein Vier-Meter-Teleskop in Chile entwickelt. Von der Auswertung der Aufnahmen dieser Kamera erhofft man sich entscheidende Fortschritte bei der Beantwortung der Frage: Was ist die "Dunkle Energie"?

Kontakt:
Dr. Klaus Reif
Argelander-Institut für Astronomie
Telefon: 0228/73-7834
E-Mail: reif@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Astronom Kameraverschluss Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie