Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker simulieren das Kristallwachstum im Computer

31.10.2001


Vereinfachtes Modell für das Kristallwachstum: Ein Atom landet auf der Oberfläche (oben rechts), ein anderes bewegt sich auf den benachbarten Gitterplatz (weißer Pfeil). Grafik: Biehl


Ergebnis der Computersimulation eines Kristalls mit Pyramidenwachstum, nachdem sich mehr als fünf Milliarden Teilchen auf 512 x 512 Gitterplätzen angeordnet haben (Aufsicht).


Das Wachstum von Halbleiterkristallen wird am Lehrstuhl für Theoretische Physik III (Computational Physics) der Universität Würzburg mit Hilfe von Computersimulationen untersucht. Ein Schwerpunkt liegt auf Materialien, die aus verschiedenen Atomsorten bestehen, wie es zum Beispiel bei den modernen Verbindungshalbleitern der Fall ist.

Für die Entwicklung neuartiger elektronischer Bauelemente - zum Beispiel von verbesserten Laserdioden für CD-Spieler - benötigt man perfekte Kristalle aus Halbleitermaterialien. Eine wichtige Technik für die Herstellung solcher Kristalle im Labor ist die Molekularstrahlepitaxie: Dabei werden in einer Vakuumkammer geringe Mengen des gewünschten Materials in einem Ofen verdampft. Die Atome treffen auf die Oberfläche einer Schicht, in die sie schließlich eingebaut werden und die dadurch wächst.

"Ein fundiertes theoretisches Verständnis der Wachstumsprozesse sollte es ermöglichen, diese experimentellen Techniken systematisch zu verbessern", sagt der Würzburger Physiker Dr. Michael Biehl. In diesem Zusammenhang stelle die Simulation im Computer ein wichtiges Werkzeug dar.

Bei der Molekularstrahlepitaxie sollen in der Regel möglichst glatte Schichten des gewünschten Materials entstehen. In der Praxis zeigen sich aber häufig Abweichungen von diesem Ideal: Es bilden sich unregelmäßige, raue Oberflächen oder sogar kleine Hügel, die an Pyramiden oder Kegel erinnern.

"In der Simulation kann man nun - anders als beim Experiment - ganz bestimmte Prozesse verbieten oder bevorzugen", so Dr. Biehl. Auf diese Weise lasse sich zum Beispiel herausfinden, welche Rolle es für die Bildung der Hügel spielt, wenn Atome an den Kanten des wachsenden Kristalls gewissermaßen herunterklettern.

In diesem Zusammenhang stellen sich weitere Fragen: Welchen Einfluss hat die Temperatur oder die Wachstumsgeschwindigkeit auf die Hügelbildung? Unter welchen Bedingungen entstehen möglichst glatte Flächen? Solchen und ähnlichen Fragen gehen Dr. Biehl, Prof. Dr. Wolfgang Kinzel und Diplom-Physiker Martin Ahr zusammen mit anderen Kollegen im Rahmen eines Projektes nach, das von der Deutschen Forschungsgemeinschaft gefördert wird.

Es sollen Modelle weiterentwickelt werden, welche die Simulation relativ großer Systeme mit vertretbarem Zeitaufwand erlauben. Denn bislang stoßen die Wissenschaftler noch rasch an die Leistungsgrenzen der heutigen Rechner. Schließlich müssen möglichst große Systeme aus sehr vielen Atomen simuliert werden, um die interessanten Effekte überhaupt beobachten zu können. Mit der Zahl der Teilchen wächst natürlich auch die benötigte Rechenzeit.

Deshalb ist es von besonderer Bedeutung, effiziente Modelle und schnelle Computerprogramme zu entwickeln. Der wichtigste und zugleich schwierigste Schritt besteht darin, geeignete Modellvorstellungen zu erarbeiten: Sie sollen einerseits die komplizierten physikalischen Prozesse soweit vereinfachen, dass das Problem lösbar wird. Andererseits müssen sie natürlich immer noch die wichtigsten Materialeigenschaften wiedergeben.

Dr. Biehl: "Bei einer sehr erfolgreichen Klasse von Modellen werden die simulierten Teilchen nur auf den Plätzen eines fest vorgegebenen Kristallgitters bewegt. Nach bestimmten Spielregeln werden Atome wie Bauklötzchen auf das Gitter gesetzt, können dort herumwandern, sich an andere Teilchen anlagern und zur Ruhe kommen." Die Bewegungsregeln ergeben sich dabei aus den physikalischen Wechselwirkungen der Teilchen, die stark vereinfacht durch anziehende oder abstoßende Kräfte repräsentiert werden.

Weitere Informationen: Dr. Michael Biehl, T (0931) 888-5865, Fax (0931) 888-5141, E-Mail: 
biehl@physik.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Atom Schicht Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise