Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anziehung trotz Abstoßung - Clusterbildung der anderen Art

13.03.2006


Je nach Druckverhältnissen liegen die Cluster (siehe Vergrößerung in der Mitte) abstoßender Teilchen in flüssiger Anordnung (links) oder als Kristall (rechts) vor (grafische Darstellung der Computer-Simulation).


Selbst bei gegenseitiger Abstoßung können Materieteilchen in einer Lösung zusammenklumpen. Die Bedingungen, unter denen diese scheinbar widersprüchliche Clusterbildung erfolgt, wurden im Rahmen eines Projekts des Wissenschaftsfonds FWF gefunden und jetzt veröffentlicht. Diese Ergebnisse aus der theoretischen Physik haben grundlegende Bedeutung für das Verständnis der Wechselwirkung zwischen Polymeren - und etablieren den noch jungen Wissenschaftszweig der "Weichen Materie" in Österreich.


Ob Milch oder Mayonnaise, ob Farben oder Tinte, ob Proteine oder DNA - sie alle gehören zur "Weichen Materie". Ihre physikalischen Eigenschaften werden erst seit wenigen Jahren systematisch analysiert - mit oftmals überraschenden Ergebnissen. Ein solches Resultat wurde jetzt von der Arbeitsgruppe um Prof. Gerhard Kahl, Institut für Theoretische Physik, Technische Universität Wien gefunden und veröffentlicht.

Harte Fakten aus Weicher Materie


"Rein intuitiv betrachtet, können in einer Flüssigkeit Teilchen nur dann zusammenklumpen, wenn sie sich anziehen," erläutert Prof. Kahl, "jetzt aber konnten wir zeigen, dass dies nicht immer so sein muss. Auch Teilchen, die einander völlig abstoßen, können Cluster bilden." Die dafür notwendigen Voraussetzungen können in einer bestimmten Art der "Weichen Materie", den kolloidalen Dispersionen, gegeben sein. In solchen Systemen sind verhältnismäßig große Teilchen (z.B. Polymere) in einem Lösungsmittel gelöst, das aus deutlich kleineren Teilchen aufgebaut ist.

Für solche Lösungen hat das Team mit KollegInnen der Universitäten Wien und Düsseldorf nun Berechnungen durchgeführt, die eindeutig zeigen: Stoßen sich Teilchen gegenseitig ab, dann können sie trotzdem zusammenklumpen, wenn zwei Voraussetzungen erfüllt sind. Erstens müssen sich die Teilchen gegenseitig überlappen können, und zweitens müssen die abstoßenden Kräfte mit zunehmender Entfernung zwischen den Teilchen sehr rasch geringer werden.

Sind diese Bedingungen erfüllt, dann kommt es zu dem scheinbar widersprüchlichen Verhalten der Teilchen. Ihre überraschenden Voraussagen konnten Mag. Bianca Mladek und Dr. Dieter Gottwald, Mitarbeiter von Prof. Kahl, mit komplexen Computersimulationen bestätigen. Die Übereinstimmung aus Vorhersage und Simulation überzeugte dann auch die Gutachter der renommierten Fachzeitschrift Physical Review Letters, in der die Arbeit nun veröffentlicht wurde.

Geordnete Verhältnisse unter Druck

Weitere unerwartete Ergebnisse konnten für das Verhalten der Teilchen unter Druckeinwirkung gefunden werden. "Unter höherem Druck", so Prof. Kahl, "ordnen sich die Cluster in Kristallen an. Noch mehr erstaunt haben uns die Ergebnisse zusätzlicher Untersuchungen. Diese zeigen nämlich, dass bei weiterer Kompression der Abstand zwischen den kristallin geordneten Clustern konstant bleibt, eine Eigenschaft, die durch die Ansammlung von mehr und mehr Teilchen in den Clustern ermöglicht wird." Diese Ergebnisse stehen im Gegensatz zum Verhalten anderer geordneter Systeme wie metallischer Festkörper, in denen sich unter Druck die Gitterabstände verringern.

Solche Berechnungen waren auf Grund der hohen Komplexität kolloidaler Dispersionen nur durch mathematische Tricks möglich. Dazu Prof. Kahl: "Die statistische Mechanik ist Grundlage unserer Berechnungen an Weicher Materie. Allerdings stellt die große Zahl an Freiheitsgraden der größeren Teilchen der Dispersionen ein Problem dar. Durch geeignete Mittelung konnten wir die Zahl der Freiheitsgrade drastisch reduzieren, sodass die Berechnung des Verhaltens der Teilchen nur noch von einer kleinen Zahl von Koordinaten abhängt."

Für Prof. Kahl sind die so gewonnenen und z. T. sehr unerwarteten Ergebnisse illustrative Beispiele dafür, dass die Natur eine große Vielfalt an Lösungen anbietet, um Teilchen energetisch optimal anzuordnen - und viele dieser Lösungen sind noch unbekannt. Das Projekt des FWF trägt nicht nur dazu bei, der Natur einige dieser Geheimnisse zu entlocken, sondern hilft auch, den noch neuen Forschungsbereich der "Weichen Materie" in Österreich zu etablieren.

Originalpublikation: Formation of Polymorphic Cluster Phases for a Class of Models of Purely Repulsive Soft Spheres. B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann und C. N. Likos. Physical Review Letters 96, 045701 (2006). DOI: 10.1103/PhysRevLett.96.045701

Wissenschaftlicher Kontakt:
Prof. Dr. Gerhard Kahl
Institut für Theoretische Physik und Center for Computational Materials
Science (CMS)
Technische Universität Wien
Wiedner Hauptstraße 8 - 10
A-1040 Wien
M +43 / 699 / 884 657-14
E gkahl@tph.tuwien.ac.at

Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40-36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Michaela Fritsch | www.prd.at
Weitere Informationen:
http://www.fwf.ac.at
http://www.tph.tuwien.ac.at

Weitere Berichte zu: Clusterbildung Dispersion Physik Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten