Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anziehung trotz Abstoßung - Clusterbildung der anderen Art

13.03.2006


Je nach Druckverhältnissen liegen die Cluster (siehe Vergrößerung in der Mitte) abstoßender Teilchen in flüssiger Anordnung (links) oder als Kristall (rechts) vor (grafische Darstellung der Computer-Simulation).


Selbst bei gegenseitiger Abstoßung können Materieteilchen in einer Lösung zusammenklumpen. Die Bedingungen, unter denen diese scheinbar widersprüchliche Clusterbildung erfolgt, wurden im Rahmen eines Projekts des Wissenschaftsfonds FWF gefunden und jetzt veröffentlicht. Diese Ergebnisse aus der theoretischen Physik haben grundlegende Bedeutung für das Verständnis der Wechselwirkung zwischen Polymeren - und etablieren den noch jungen Wissenschaftszweig der "Weichen Materie" in Österreich.


Ob Milch oder Mayonnaise, ob Farben oder Tinte, ob Proteine oder DNA - sie alle gehören zur "Weichen Materie". Ihre physikalischen Eigenschaften werden erst seit wenigen Jahren systematisch analysiert - mit oftmals überraschenden Ergebnissen. Ein solches Resultat wurde jetzt von der Arbeitsgruppe um Prof. Gerhard Kahl, Institut für Theoretische Physik, Technische Universität Wien gefunden und veröffentlicht.

Harte Fakten aus Weicher Materie


"Rein intuitiv betrachtet, können in einer Flüssigkeit Teilchen nur dann zusammenklumpen, wenn sie sich anziehen," erläutert Prof. Kahl, "jetzt aber konnten wir zeigen, dass dies nicht immer so sein muss. Auch Teilchen, die einander völlig abstoßen, können Cluster bilden." Die dafür notwendigen Voraussetzungen können in einer bestimmten Art der "Weichen Materie", den kolloidalen Dispersionen, gegeben sein. In solchen Systemen sind verhältnismäßig große Teilchen (z.B. Polymere) in einem Lösungsmittel gelöst, das aus deutlich kleineren Teilchen aufgebaut ist.

Für solche Lösungen hat das Team mit KollegInnen der Universitäten Wien und Düsseldorf nun Berechnungen durchgeführt, die eindeutig zeigen: Stoßen sich Teilchen gegenseitig ab, dann können sie trotzdem zusammenklumpen, wenn zwei Voraussetzungen erfüllt sind. Erstens müssen sich die Teilchen gegenseitig überlappen können, und zweitens müssen die abstoßenden Kräfte mit zunehmender Entfernung zwischen den Teilchen sehr rasch geringer werden.

Sind diese Bedingungen erfüllt, dann kommt es zu dem scheinbar widersprüchlichen Verhalten der Teilchen. Ihre überraschenden Voraussagen konnten Mag. Bianca Mladek und Dr. Dieter Gottwald, Mitarbeiter von Prof. Kahl, mit komplexen Computersimulationen bestätigen. Die Übereinstimmung aus Vorhersage und Simulation überzeugte dann auch die Gutachter der renommierten Fachzeitschrift Physical Review Letters, in der die Arbeit nun veröffentlicht wurde.

Geordnete Verhältnisse unter Druck

Weitere unerwartete Ergebnisse konnten für das Verhalten der Teilchen unter Druckeinwirkung gefunden werden. "Unter höherem Druck", so Prof. Kahl, "ordnen sich die Cluster in Kristallen an. Noch mehr erstaunt haben uns die Ergebnisse zusätzlicher Untersuchungen. Diese zeigen nämlich, dass bei weiterer Kompression der Abstand zwischen den kristallin geordneten Clustern konstant bleibt, eine Eigenschaft, die durch die Ansammlung von mehr und mehr Teilchen in den Clustern ermöglicht wird." Diese Ergebnisse stehen im Gegensatz zum Verhalten anderer geordneter Systeme wie metallischer Festkörper, in denen sich unter Druck die Gitterabstände verringern.

Solche Berechnungen waren auf Grund der hohen Komplexität kolloidaler Dispersionen nur durch mathematische Tricks möglich. Dazu Prof. Kahl: "Die statistische Mechanik ist Grundlage unserer Berechnungen an Weicher Materie. Allerdings stellt die große Zahl an Freiheitsgraden der größeren Teilchen der Dispersionen ein Problem dar. Durch geeignete Mittelung konnten wir die Zahl der Freiheitsgrade drastisch reduzieren, sodass die Berechnung des Verhaltens der Teilchen nur noch von einer kleinen Zahl von Koordinaten abhängt."

Für Prof. Kahl sind die so gewonnenen und z. T. sehr unerwarteten Ergebnisse illustrative Beispiele dafür, dass die Natur eine große Vielfalt an Lösungen anbietet, um Teilchen energetisch optimal anzuordnen - und viele dieser Lösungen sind noch unbekannt. Das Projekt des FWF trägt nicht nur dazu bei, der Natur einige dieser Geheimnisse zu entlocken, sondern hilft auch, den noch neuen Forschungsbereich der "Weichen Materie" in Österreich zu etablieren.

Originalpublikation: Formation of Polymorphic Cluster Phases for a Class of Models of Purely Repulsive Soft Spheres. B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann und C. N. Likos. Physical Review Letters 96, 045701 (2006). DOI: 10.1103/PhysRevLett.96.045701

Wissenschaftlicher Kontakt:
Prof. Dr. Gerhard Kahl
Institut für Theoretische Physik und Center for Computational Materials
Science (CMS)
Technische Universität Wien
Wiedner Hauptstraße 8 - 10
A-1040 Wien
M +43 / 699 / 884 657-14
E gkahl@tph.tuwien.ac.at

Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40-36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Michaela Fritsch | www.prd.at
Weitere Informationen:
http://www.fwf.ac.at
http://www.tph.tuwien.ac.at

Weitere Berichte zu: Clusterbildung Dispersion Physik Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise