Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleiner Saturnmond ganz groß

10.03.2006


Max-Planck Forscher weisen Material aus den Tiefen des Mondes Enceladus in der Saturn-Magnetosphäre nach


Der Saturnmond Enceladus wird kontinuierlich von energiereichen Elektronen bombardiert. Diese bewegen sich entgegengesetzt zur Bewegung um den Planeten (roter Pfeil). Am 14. Juli 2005 flog die Raumsonde Cassini durch diesen Strom von Elektronen. Das Instrument LEMMS (einer von drei Detektoren des MIMI-Instruments) an Bord der Raumsonde CASSINI zeichnete eine stark reduzierte Anzahl dieser Elektronen in der Region auf, die durch den Mond abgeschirmt wurde (grüner Bereich). Solche Beobachtungen erlauben dem MIMI-Team die Wechselwirkung zwischen Enceladus und geladenen Teilchen im so genannten Strahlungsgürtel zu studieren. Variationen in diesen Signaturen sind Indikatoren für ausgasendes Material aus tiefen Schluchten in der Nähe des Südpols von Enceladus. Bild: Max-Planck-Institut für Sonnensystemforschung



Der kleine Saturnmond Enceladus stößt permanent Eis- und Gasfontänen aus. Deren Effekt kann noch in einer Million Kilometer Entfernung nachgewiesen werden, berichten jetzt Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau in der Fachzeitschrift "Science" (Science, 10. März 2006). Ein von diesem Institut gebauter Detektor an Bord der NASA/ESA-Raumsonde CASSINI hat "Löcher" in der Magnetosphäre des Planeten entdeckt: Eine Blase geladener Teilchen, die den Saturn umgibt. Diese Löcher werden durch Material von Enceladus verursacht, das in der Nähe des Südpols aus dessen Inneren austritt.

... mehr zu:
»LEMMS »Saturn »Strahlungsgürtel


Enceladus, ein Eismond des Gasriesen Saturn mit einem Durchmesser von nur 500 Kilometer, spielt eine wichtige Rolle beim Verständnis des Saturns und seiner Ringe. Nach mehreren nahen Vorbeiflügen der NASA-Raumsonde CASSINI an Enceladus wurde deutlich, dass der Mond geologisch aktiv zu sein scheint. Eis und Gas wird ständig aus tiefen Schluchten in der Nähe des Südpols heraus in die Umgebung freigesetzt. Auswirkungen dieses Phänomens sind noch in mehr als eine Million Kilometern Entfernung von Enceladus messbar und beeinflussen die Saturnmagnetosphäre.

Die Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung (MPS) in Katlenburg-Lindau sind an Instrumenten an Bord der Raumsonde Cassini beteiligt. Der Detektor LEMMS des "Magnetospheric Imaging Instruments" (MIMI) wurde in den Labors des MPS entwickelt und gebaut. LEMMS ist in der Lage, Energie und Richtung von Elektronen und Ionen in der Saturn-Magnetosphäre zu bestimmen.

Wie die Erde besitzt auch Saturn ein eigenes Magnetfeld, welches in der Lage ist, Elektronen und Ionen in einem so genannten Strahlungsgürtel zu fangen. Enceladus umkreist Saturn innerhalb dieses Strahlungsgürtels. Geladene Teilchen aus dem Strahlungsgürtel gehen auf der Mondoberfläche verloren und hinterlassen eine Lücke in der Teilchenverteilung des Strahlungsgürtels, die man mit LEMMS beobachten kann.

Doch anders als erwartet, beobachteten die Forscher keine scharfe, gleichmäßige Absenkung der Teilchenanzahl wie bei anderen Eismonden, sondern eine variable, stark schwankende so genannte Absorptionssignatur in den LEMMS-Daten. Diese Variabilität bringen die Wissenschaftler mit der beobachteten geologischen Aktivität des Mondes Enceladus in Verbindung. "Was wir eigentlich mit LEMMS beobachten, ist der Einfluss, den die veränderlichen Eis- und Gaswolken aus den tiefen Schluchten von Enceladus auf die Saturnmagnetosphäre haben", sagt Dr. Geraint H. Jones vom Max-Planck-Institut für Sonnensystemforschung. "Diese Messungen ergänzen Resultate von anderen Cassini-Teams, die den Mond, seine Oberfläche, seine Atmosphäre sowie seinen Einfluss auf die Magnetosphäre studiert haben. Viele Disziplinen in der Physik kommen hier zusammen, das ist fantastisch".

Originalveröffentlichung:

G. H. Jones, E. Roussos, N. Krupp, C. Paranicas, J. Woch, A. Lagg, D. G. Mitchell, S. M. Krimigis, and M. K. Dougherty
Enceladus’ Varying Imprint on the Magnetosphere of Saturn
Science, 10 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: LEMMS Saturn Strahlungsgürtel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie