Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit einmalige Beschleunigeranlage für die Dosimetrie

03.03.2006


Die PTB erweitert ihre Messmöglichkeiten für die Strahlentherapie.



Die Physikalisch-Technische Bundesanstalt (PTB) errichtet auf ihrem Gelände in Braunschweig eine Elektronenbeschleunigeranlage für die Dosimetrie in der Strahlentherapie. Das in diesem Umfang weltweit einmalige Projekt erweitert die Messmöglichkeiten der PTB für Photonen- und Elektronenstrahlung beträchtlich. Auf rund 1000 qm Nutzfläche werden drei Beschleuniger alle experimentellen Erfordernisse abdecken - von der Grundlagenforschung bis zur Anwendung in der Klinik. Die Anlage, die 14 Millionen Euro kostet, soll Ende 2007 in Betrieb gehen. Am 16. März 2006 wird der Grundstein gelegt.



Die Therapie mit hochenergetischer Photonen- oder Elektronenstrahlung ist eine der wichtigsten Behandlungsmethoden bösartiger Tumorerkrankungen. In einer jüngst veröffentlichten Studie schätzt das Robert-Koch-Institut die Zahl der jährlichen Krebsneuerkrankungen auf rund 425 000. Etwa jeder zweite Krebspatient erhält im Laufe seiner Erkrankung eine Strahlentherapie. Vor allem bei fortgeschrittenen Tumorleiden kommt der Strahlentherapie eine immer größere Bedeutung zu. Die Strahlen zerstören die bösartigen Zellen effektiv und gezielt, so dass meist schon nach wenigen Tagen erste Erfolge zu erkennen sind. Bei mehr als 80 Prozent der Patienten werden die Schmerzen durch die Bestrahlung gelindert, die Lebensqualität verbessert und die Überlebenszeit verlängert.

Wenn man einen einzelnen Tumor bestrahlt, dann soll er möglichst genau und vollständig erfasst und gleichzeitig das umliegende gesunde Gewebe geschont werden. Die Techniken werden ständig weiter entwickelt. Eine neue Methode, um die Dosisverteilung möglichst genau dem Volumen des Tumors anzupassen, ist die "Intensity Modulated Radiation Therapy" (IMRT). Dabei wird der Patient aus verschiedenen Richtungen mit Strahlungsfeldern unterschiedlicher Form, Größe und Intensität bestrahlt. Das stellt eine Herausforderung für die Dosimetrie dar und erfordert eine Weiterentwickung der bestehenden Messtechnik. Für diese neue Technik ist die PTB demnächst bestens ausgerüstet. Einer der neuen Beschleuniger wird speziell für IMRT ausgerüstet sein. Er besitzt einen Lamellenkollimator, mit dem besonders kleine und irregulär geformte Strahlungsfelder realisiert werden können.

Die neue Anlage bietet eine weltweit einzigartige apparative Ausstattung für die Dosimetrie. Zwei der drei Beschleuniger sind Therapiebeschleuniger, wie sie auch in Kliniken eingesetzt werden. Doch anders als in einer Klinik, die in der Regel nur zwei verschiedene Strahlungsqualitäten zur Verfügung hat, wird in der PTB mit insgesamt sechs klinischen Referenzstrahlungsfeldern für Photonenstrahlung mit Erzeugungsspannungen zwischen 4 MV und 25 MV der in der Praxis vorkommende Bereich vollständig abgedeckt werden. Ziel ist es, möglichst anwendungsnah kalibrieren zu können. Für Elektronenstrahlung wird es sogar 10 Referenzfelder geben.

Der dritte Beschleuniger ist ein 11 m langer Linearbeschleuniger, der speziell für die Grundlagenforschung in der PTB entwickelt worden ist. Die Energie des Elektronenstrahls kann kontinuierlich von 0,5 MeV bis 50 MeV verändert werden. Nirgendwo sonst steht der Dosimetrie ein so großer Energiebereich zur Verfügung. Dabei ist die Leistung so hoch (bis zu 1 kW), dass Photonenstrahlung mit therapeutisch relevanten Dosisleistungen (4 Gy/min) erzeugt werden kann. Spezielle Ablenkmagnete und Strahlblenden sorgen für eine einzigartige Energieschärfe. Es können schmale, aufgefächerte und sogar bewegte Strahlenbündel erzeugt werden, sowohl mit Elektronen als auch mit Photonen.

Insgesamt können vier Bestrahlungsräume betrieben werden, die gegen nach außen tretende Strahlung sicher abgeschirmt sind.

Die PTB hat den gesetzlichen Auftrag, die Einheitlichkeit des Messwesens in der Heilkunde im allgemeinen sicherzustellen, speziell auch in der Strahlentherapie. Dort werden Dosimeter verwendet, die zur Anzeige der Wasser-Energiedosis in der Einheit Gray (1 Gy = 1 J/kg) kalibriert sind. Die PTB stellt hierfür das deutsche Primärnormal dar und kalibriert die Normale der Gerätehersteller, Eichämter und DKD-Messstellen. Außerdem prüft, verbessert und entwickelt sie Dosimeter und genormte Messverfahren, entwickelt Dosisnormale für wohldefinierte praxisnahe Bestrahlungsbedingungen (Referenzfelder) zur Untersuchung der Eigenschaften von Strahlungsdetektoren und unterstützt die Qualitätssicherung der klinischen Dosimetrie durch Beratung der Eichbehörden und der privatwirtschaftlichen Messstelle, die messtechnische Kontrollen durchführt. In anonymisierter Form erfasst die PTB die Ergebnisse dieser Kontrollen in einer Datenbank. Deren Auswertung belegt die insgesamt hohe Qualität der klinischen Dosimetrie in Deutschland. Dazu trägt nicht zuletzt die Grundlagenforschung der PTB bei. Hier werden unter anderem Strahlungstransporteigenschaften ausgesuchter Materialien gemessen. Die Daten finden Eingang in Planungs- und Simulationsprogramme - unverzichtbare Werkzeuge auch in der Medizin.

Weitere Informationen:
Dr. Klaus Derikum, PTB-Stabsstelle "Neubau Elektronenbeschleuniger"
Telefon: (05 31) 592-62 09,
E-Mail: klaus.derikum@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/de/org/6/62/6201/_index.htm

Weitere Berichte zu: Dosimetrie Elektronenstrahlung Strahlentherapie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten