Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit einmalige Beschleunigeranlage für die Dosimetrie

03.03.2006


Die PTB erweitert ihre Messmöglichkeiten für die Strahlentherapie.



Die Physikalisch-Technische Bundesanstalt (PTB) errichtet auf ihrem Gelände in Braunschweig eine Elektronenbeschleunigeranlage für die Dosimetrie in der Strahlentherapie. Das in diesem Umfang weltweit einmalige Projekt erweitert die Messmöglichkeiten der PTB für Photonen- und Elektronenstrahlung beträchtlich. Auf rund 1000 qm Nutzfläche werden drei Beschleuniger alle experimentellen Erfordernisse abdecken - von der Grundlagenforschung bis zur Anwendung in der Klinik. Die Anlage, die 14 Millionen Euro kostet, soll Ende 2007 in Betrieb gehen. Am 16. März 2006 wird der Grundstein gelegt.



Die Therapie mit hochenergetischer Photonen- oder Elektronenstrahlung ist eine der wichtigsten Behandlungsmethoden bösartiger Tumorerkrankungen. In einer jüngst veröffentlichten Studie schätzt das Robert-Koch-Institut die Zahl der jährlichen Krebsneuerkrankungen auf rund 425 000. Etwa jeder zweite Krebspatient erhält im Laufe seiner Erkrankung eine Strahlentherapie. Vor allem bei fortgeschrittenen Tumorleiden kommt der Strahlentherapie eine immer größere Bedeutung zu. Die Strahlen zerstören die bösartigen Zellen effektiv und gezielt, so dass meist schon nach wenigen Tagen erste Erfolge zu erkennen sind. Bei mehr als 80 Prozent der Patienten werden die Schmerzen durch die Bestrahlung gelindert, die Lebensqualität verbessert und die Überlebenszeit verlängert.

Wenn man einen einzelnen Tumor bestrahlt, dann soll er möglichst genau und vollständig erfasst und gleichzeitig das umliegende gesunde Gewebe geschont werden. Die Techniken werden ständig weiter entwickelt. Eine neue Methode, um die Dosisverteilung möglichst genau dem Volumen des Tumors anzupassen, ist die "Intensity Modulated Radiation Therapy" (IMRT). Dabei wird der Patient aus verschiedenen Richtungen mit Strahlungsfeldern unterschiedlicher Form, Größe und Intensität bestrahlt. Das stellt eine Herausforderung für die Dosimetrie dar und erfordert eine Weiterentwickung der bestehenden Messtechnik. Für diese neue Technik ist die PTB demnächst bestens ausgerüstet. Einer der neuen Beschleuniger wird speziell für IMRT ausgerüstet sein. Er besitzt einen Lamellenkollimator, mit dem besonders kleine und irregulär geformte Strahlungsfelder realisiert werden können.

Die neue Anlage bietet eine weltweit einzigartige apparative Ausstattung für die Dosimetrie. Zwei der drei Beschleuniger sind Therapiebeschleuniger, wie sie auch in Kliniken eingesetzt werden. Doch anders als in einer Klinik, die in der Regel nur zwei verschiedene Strahlungsqualitäten zur Verfügung hat, wird in der PTB mit insgesamt sechs klinischen Referenzstrahlungsfeldern für Photonenstrahlung mit Erzeugungsspannungen zwischen 4 MV und 25 MV der in der Praxis vorkommende Bereich vollständig abgedeckt werden. Ziel ist es, möglichst anwendungsnah kalibrieren zu können. Für Elektronenstrahlung wird es sogar 10 Referenzfelder geben.

Der dritte Beschleuniger ist ein 11 m langer Linearbeschleuniger, der speziell für die Grundlagenforschung in der PTB entwickelt worden ist. Die Energie des Elektronenstrahls kann kontinuierlich von 0,5 MeV bis 50 MeV verändert werden. Nirgendwo sonst steht der Dosimetrie ein so großer Energiebereich zur Verfügung. Dabei ist die Leistung so hoch (bis zu 1 kW), dass Photonenstrahlung mit therapeutisch relevanten Dosisleistungen (4 Gy/min) erzeugt werden kann. Spezielle Ablenkmagnete und Strahlblenden sorgen für eine einzigartige Energieschärfe. Es können schmale, aufgefächerte und sogar bewegte Strahlenbündel erzeugt werden, sowohl mit Elektronen als auch mit Photonen.

Insgesamt können vier Bestrahlungsräume betrieben werden, die gegen nach außen tretende Strahlung sicher abgeschirmt sind.

Die PTB hat den gesetzlichen Auftrag, die Einheitlichkeit des Messwesens in der Heilkunde im allgemeinen sicherzustellen, speziell auch in der Strahlentherapie. Dort werden Dosimeter verwendet, die zur Anzeige der Wasser-Energiedosis in der Einheit Gray (1 Gy = 1 J/kg) kalibriert sind. Die PTB stellt hierfür das deutsche Primärnormal dar und kalibriert die Normale der Gerätehersteller, Eichämter und DKD-Messstellen. Außerdem prüft, verbessert und entwickelt sie Dosimeter und genormte Messverfahren, entwickelt Dosisnormale für wohldefinierte praxisnahe Bestrahlungsbedingungen (Referenzfelder) zur Untersuchung der Eigenschaften von Strahlungsdetektoren und unterstützt die Qualitätssicherung der klinischen Dosimetrie durch Beratung der Eichbehörden und der privatwirtschaftlichen Messstelle, die messtechnische Kontrollen durchführt. In anonymisierter Form erfasst die PTB die Ergebnisse dieser Kontrollen in einer Datenbank. Deren Auswertung belegt die insgesamt hohe Qualität der klinischen Dosimetrie in Deutschland. Dazu trägt nicht zuletzt die Grundlagenforschung der PTB bei. Hier werden unter anderem Strahlungstransporteigenschaften ausgesuchter Materialien gemessen. Die Daten finden Eingang in Planungs- und Simulationsprogramme - unverzichtbare Werkzeuge auch in der Medizin.

Weitere Informationen:
Dr. Klaus Derikum, PTB-Stabsstelle "Neubau Elektronenbeschleuniger"
Telefon: (05 31) 592-62 09,
E-Mail: klaus.derikum@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/de/org/6/62/6201/_index.htm

Weitere Berichte zu: Dosimetrie Elektronenstrahlung Strahlentherapie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik