Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überschallknall im All

03.03.2006


Internationales Forscherteam beobachtet mit Spitzer-Weltraumteleskop eine der bisher größten intergalaktischen Schockwellen


Dieses Falschfarben-Komposit der Zentralregion des Stephans Quintett zeigt ein kompliziertes Geflecht aus Galaxien und intergalaktischem Medium. Das Muster entstand durch die Wechselwirkung der Galaxie NGC7318b (blaue Wolke rechts der Mitte) mit ihrer Umgebung: Das Milchstraßensystem rast mit einer Geschwindigkeit von 1000 Kilometern pro Sekunde in das intergalaktische Medium und erzeugt dadurch eine Schockwelle, die im Licht von Wasserstoffmolekülen grün leuchtet. Das Bild entstand durch die Überlagerung von Aufnahmen, die mit dem Observatorium auf dem Calar Alto in Spanien und dem Weltraumteleskop Spitzer gewonnen wurden. Bild: NASA/JPL-Caltech


Eine der häufigsten Arten von Schockwellen ist der Überschallschock, der von Düsenflugzeugen wie diesem Jet der US Navy bei einem sehr schnellen Flug übers Meer erzeugt wird. Wenn ein Überschallflugzeug die Schallmauer durchbricht, holt es seine eigenen Schallwellen ein. Diese werden zu einer kegelförmigen "Schockwelle" zusammengedrückt, die sich nach außen in Richtung Boden bewegt und dabei den bekannten Überschallknall erzeugt. Der Überschallschock ist für uns unsichtbar, aber bei hoher Luftfeuchtigkeit kommt es vor, dass Dampf zu Wassertropfen kondensiert und dabei eine sichtbare, kegelförmige Wolke am Heck des Düsenflugzeugs bildet. Bild: US Navy



Astronomen haben in einer Galaxiengruppen eine gigantische Schockwelle aufgespürt, die größer ist als die Milchstraße. Mit dem NASA-Infrarotteleskop Spitzer untersuchte das internationale Team - zu ihm gehören Wissenschaftler des Max-Planck-Instituts für Kernphysik und des California Institute of Technology in Pasadena (USA) - die Galaxiengruppe "Stephans Quintett". Diese Gruppe von fünf Galaxien ist Schauplatz einer gewaltigen kosmischen Kollision. Die Entdeckung der Schockwelle liefert den Forschern neue Einblicke in die Anfänge des Universums, als Verschmelzungen und Zusammenstöße von Galaxien an der Tagesordnung waren (Astrophysical Journal, in Druck).

... mehr zu:
»Galaxie »Galaxiengruppe


Seit Jahrzehnten beobachten Wissenschaftler die 300 Millionen Lichtjahre entfernte Galaxiengruppe namens "Stephans Quintett" mit optischen Teleskopen. Die ungewöhnliche Gestalt der Galaxien ließ sie vermuten, dass die Sternsysteme dort früher oft zusammengestoßen sind - und noch heute miteinander kollidieren. Vor kurzem haben Astronomen im Radio- und Röntgenbereich riesige Gasmengen zwischen den Galaxien entdeckt; diese Wolken bestehen hauptsächlich aus Wasserstoff und Helium, besitzen hundert Milliarden Sonnenmassen und enthalten mehr Gas als die Galaxien selbst.

Jetzt hat das Team aus deutschen, amerikanischen, australischen und chinesischen Forschern das Weltraumteleskop Spitzer auf die Galaxiengruppe gerichtet und mit dem sehr empfindlichen Infrarot-Spektrometer des Instruments die Galaxie NGC 7318b unter die Lupe genommen. NGC 7318b bewegt sich sehr schnell auf die anderen Galaxien zu und erzeugt auf ihrem Weg durch das intergalaktische Gas eine gigantische Schockwelle - größer als unsere Milchstraße mit ihren 100.000 Lichtjahren Durchmesser.

Die Schockwelle verriet sich durch eine starke Infrarotstrahlung. Sie stammt von Wasserstoffmolekülen, die bei der Kollision von Materie zum Leuchten angeregt werden. "Die Stärke der Strahlung und die Tatsache, dass das Gas derart durcheinander gewirbelt wird, war für uns eine große Überraschung", sagt Gruppenleiter Philip Appleton vom California Institute of Technology in Pasadena. "Wir erwarteten die spektrale Zusammensetzung von Staubkörnchen. Stattdessen sahen wir nichts außer einem Spektrum von Wasserstoffmolekülen, wie es im Labor zu sehen ist. So etwas haben wir in einem Galaxiensystem noch nie zuvor beobachtet."

Mit dem Spektrometer identifizierten die Wissenschaftler in Stephans Quintett eine ungewöhnlich "verschmierte" Linie - die breiteste, die für heißen Wasserstoff jemals gefunden wurde. Aus ihr ließ sich eine Geschwindigkeit von 870 Kilometern pro Sekunde hin - das Gas bewegt sich also hundertmal schneller als der Schall in Luft (330 Meter pro Sekunde). "Anscheinend entstehen Wasserstoffmoleküle entweder in der Schockwelle oder hinter ihr, ähnlich Wassertropfen, die sich hinter einem Flugzeug bilden, das die Schallmauer durchbricht. Nur passiert das hier in kosmischen Dimensionen und bei einer Geschwindigkeit von Mach 100 oder mehr", sagt Richard Tuffs von der Astrophysik-Abteilung des Max-Planck-Instituts für Kernphysik in Heidelberg.

Die Beobachtungen geben Einblick in die Vergangenheit des Alls. Damals kollidierten und verschmolzen die Galaxien noch viel häufiger als in der Gegenwart. "So bietet uns eine benachbarte Galaxiengruppe, die von einer dichten Gaswolke verhüllt ist, ein Modell des Universums, wie es vor zehn Milliarden Jahren ausgesehen hat", sagt Cristina Popescu, die andere Autorin aus dem Heidelberger Max-Planck-Institut. Zu dieser Zeit waren bereits die ersten Galaxien entstanden, ihre Dichte und die des Weltraums waren allerdings viel höher als heute. "In dieser Hinsicht gleichen unsere Beobachtungen einer Reise mit der Zeitmaschine", so Popescu.

Die neuen Ergebnisse deuten außerdem darauf hin, dass die helle Infrarotstrahlung weit entfernter Galaxien nicht nur von den Sternen ausgeht, sondern auch von gewaltigen Schockwellen im Gas kollidierender Galaxien erzeugt wird. Übrigens wird unsere Milchstraße in zwei Milliarden Jahren voraussichtlich mit dem Andromeda-Nebel zusammenstoßen und dabei selbst eine kosmische Schockwelle erzeugen.

Das Spitzer Weltraumteleskop wird vom NASA Jet Propulsion Laboratory (JPL) gemanagt. Die wissenschaftliche Datenauswertung erfolgt am Spitzer Science Center des California Institute of Technology (CalTech) in Pasadena, USA.

An diesen Beobachtungen waren beteiligt:

California Institute of Technology, Pasadena, USA:
Philip N. Appleton, Kevin C. Xu, William Reach and N. Lu

Max Planck Institut für Kernphysik, Heidelberg, Germany:
Richard J. Tuffs and Cristina C. Popescu

Australian National University:
Michael Dopita

University of Alabama, USA:
J.W. Sulentic

University of Massachusetts, USA:
M.S. Yun

Purple Mountain Observatory, China:
Y. Gao

Originalveröffentlichung:

P.N. Appleton, K.C. Xu , W. Reach , M.A. Dopita , Y. Gao , N. Lu , C.C. Popescu, J.W. Sulentic, R.J. Tuffs, and M.S. Yun
Powerful High-Velocity Dispersion Molecular Hydrogen Associated with an Intergalactic Shock Wave in Stephan’s Quintet
The Astrophysical Journal, 639:L51-L54, 10 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Galaxie Galaxiengruppe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau