Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überschallknall im All

03.03.2006


Internationales Forscherteam beobachtet mit Spitzer-Weltraumteleskop eine der bisher größten intergalaktischen Schockwellen


Dieses Falschfarben-Komposit der Zentralregion des Stephans Quintett zeigt ein kompliziertes Geflecht aus Galaxien und intergalaktischem Medium. Das Muster entstand durch die Wechselwirkung der Galaxie NGC7318b (blaue Wolke rechts der Mitte) mit ihrer Umgebung: Das Milchstraßensystem rast mit einer Geschwindigkeit von 1000 Kilometern pro Sekunde in das intergalaktische Medium und erzeugt dadurch eine Schockwelle, die im Licht von Wasserstoffmolekülen grün leuchtet. Das Bild entstand durch die Überlagerung von Aufnahmen, die mit dem Observatorium auf dem Calar Alto in Spanien und dem Weltraumteleskop Spitzer gewonnen wurden. Bild: NASA/JPL-Caltech


Eine der häufigsten Arten von Schockwellen ist der Überschallschock, der von Düsenflugzeugen wie diesem Jet der US Navy bei einem sehr schnellen Flug übers Meer erzeugt wird. Wenn ein Überschallflugzeug die Schallmauer durchbricht, holt es seine eigenen Schallwellen ein. Diese werden zu einer kegelförmigen "Schockwelle" zusammengedrückt, die sich nach außen in Richtung Boden bewegt und dabei den bekannten Überschallknall erzeugt. Der Überschallschock ist für uns unsichtbar, aber bei hoher Luftfeuchtigkeit kommt es vor, dass Dampf zu Wassertropfen kondensiert und dabei eine sichtbare, kegelförmige Wolke am Heck des Düsenflugzeugs bildet. Bild: US Navy



Astronomen haben in einer Galaxiengruppen eine gigantische Schockwelle aufgespürt, die größer ist als die Milchstraße. Mit dem NASA-Infrarotteleskop Spitzer untersuchte das internationale Team - zu ihm gehören Wissenschaftler des Max-Planck-Instituts für Kernphysik und des California Institute of Technology in Pasadena (USA) - die Galaxiengruppe "Stephans Quintett". Diese Gruppe von fünf Galaxien ist Schauplatz einer gewaltigen kosmischen Kollision. Die Entdeckung der Schockwelle liefert den Forschern neue Einblicke in die Anfänge des Universums, als Verschmelzungen und Zusammenstöße von Galaxien an der Tagesordnung waren (Astrophysical Journal, in Druck).

... mehr zu:
»Galaxie »Galaxiengruppe


Seit Jahrzehnten beobachten Wissenschaftler die 300 Millionen Lichtjahre entfernte Galaxiengruppe namens "Stephans Quintett" mit optischen Teleskopen. Die ungewöhnliche Gestalt der Galaxien ließ sie vermuten, dass die Sternsysteme dort früher oft zusammengestoßen sind - und noch heute miteinander kollidieren. Vor kurzem haben Astronomen im Radio- und Röntgenbereich riesige Gasmengen zwischen den Galaxien entdeckt; diese Wolken bestehen hauptsächlich aus Wasserstoff und Helium, besitzen hundert Milliarden Sonnenmassen und enthalten mehr Gas als die Galaxien selbst.

Jetzt hat das Team aus deutschen, amerikanischen, australischen und chinesischen Forschern das Weltraumteleskop Spitzer auf die Galaxiengruppe gerichtet und mit dem sehr empfindlichen Infrarot-Spektrometer des Instruments die Galaxie NGC 7318b unter die Lupe genommen. NGC 7318b bewegt sich sehr schnell auf die anderen Galaxien zu und erzeugt auf ihrem Weg durch das intergalaktische Gas eine gigantische Schockwelle - größer als unsere Milchstraße mit ihren 100.000 Lichtjahren Durchmesser.

Die Schockwelle verriet sich durch eine starke Infrarotstrahlung. Sie stammt von Wasserstoffmolekülen, die bei der Kollision von Materie zum Leuchten angeregt werden. "Die Stärke der Strahlung und die Tatsache, dass das Gas derart durcheinander gewirbelt wird, war für uns eine große Überraschung", sagt Gruppenleiter Philip Appleton vom California Institute of Technology in Pasadena. "Wir erwarteten die spektrale Zusammensetzung von Staubkörnchen. Stattdessen sahen wir nichts außer einem Spektrum von Wasserstoffmolekülen, wie es im Labor zu sehen ist. So etwas haben wir in einem Galaxiensystem noch nie zuvor beobachtet."

Mit dem Spektrometer identifizierten die Wissenschaftler in Stephans Quintett eine ungewöhnlich "verschmierte" Linie - die breiteste, die für heißen Wasserstoff jemals gefunden wurde. Aus ihr ließ sich eine Geschwindigkeit von 870 Kilometern pro Sekunde hin - das Gas bewegt sich also hundertmal schneller als der Schall in Luft (330 Meter pro Sekunde). "Anscheinend entstehen Wasserstoffmoleküle entweder in der Schockwelle oder hinter ihr, ähnlich Wassertropfen, die sich hinter einem Flugzeug bilden, das die Schallmauer durchbricht. Nur passiert das hier in kosmischen Dimensionen und bei einer Geschwindigkeit von Mach 100 oder mehr", sagt Richard Tuffs von der Astrophysik-Abteilung des Max-Planck-Instituts für Kernphysik in Heidelberg.

Die Beobachtungen geben Einblick in die Vergangenheit des Alls. Damals kollidierten und verschmolzen die Galaxien noch viel häufiger als in der Gegenwart. "So bietet uns eine benachbarte Galaxiengruppe, die von einer dichten Gaswolke verhüllt ist, ein Modell des Universums, wie es vor zehn Milliarden Jahren ausgesehen hat", sagt Cristina Popescu, die andere Autorin aus dem Heidelberger Max-Planck-Institut. Zu dieser Zeit waren bereits die ersten Galaxien entstanden, ihre Dichte und die des Weltraums waren allerdings viel höher als heute. "In dieser Hinsicht gleichen unsere Beobachtungen einer Reise mit der Zeitmaschine", so Popescu.

Die neuen Ergebnisse deuten außerdem darauf hin, dass die helle Infrarotstrahlung weit entfernter Galaxien nicht nur von den Sternen ausgeht, sondern auch von gewaltigen Schockwellen im Gas kollidierender Galaxien erzeugt wird. Übrigens wird unsere Milchstraße in zwei Milliarden Jahren voraussichtlich mit dem Andromeda-Nebel zusammenstoßen und dabei selbst eine kosmische Schockwelle erzeugen.

Das Spitzer Weltraumteleskop wird vom NASA Jet Propulsion Laboratory (JPL) gemanagt. Die wissenschaftliche Datenauswertung erfolgt am Spitzer Science Center des California Institute of Technology (CalTech) in Pasadena, USA.

An diesen Beobachtungen waren beteiligt:

California Institute of Technology, Pasadena, USA:
Philip N. Appleton, Kevin C. Xu, William Reach and N. Lu

Max Planck Institut für Kernphysik, Heidelberg, Germany:
Richard J. Tuffs and Cristina C. Popescu

Australian National University:
Michael Dopita

University of Alabama, USA:
J.W. Sulentic

University of Massachusetts, USA:
M.S. Yun

Purple Mountain Observatory, China:
Y. Gao

Originalveröffentlichung:

P.N. Appleton, K.C. Xu , W. Reach , M.A. Dopita , Y. Gao , N. Lu , C.C. Popescu, J.W. Sulentic, R.J. Tuffs, and M.S. Yun
Powerful High-Velocity Dispersion Molecular Hydrogen Associated with an Intergalactic Shock Wave in Stephan’s Quintet
The Astrophysical Journal, 639:L51-L54, 10 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Galaxie Galaxiengruppe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie