Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnellste Messung von Molekülvibrationen

03.03.2006


Heidelberger Max-Planck-Forscher und britische Wissenschaftler verfolgen die Bewegung von Atomkernen in Molekülen mit einer Rekord-Zeitauflösung


Rohdaten der gemessenen UV-Strahlung, die von Wasserstoff (H2)- bzw. Deuteriummolekülen (D2) unter dem Einfluss eines starken Laserpulses emittiert wird. Zunehmende Pixelnummer entspricht abnehmender UV-Wellenlänge. Die stärkere Intensität des D2-Signals spiegelt die langsamere Vibration im Vergleich zu H2 wider. Bild: Imperial College London



Werden Atome oder Moleküle von einem kurzen intensiven Laserpuls getroffen, geben sie hochfrequente Strahlung im extremen UV-Bereich ab. In Molekülen wird dieser Prozess von den Schwingungen der Atome beeinflusst. Vergleicht man die Spektren von unterschiedlich schweren, aber sonst gleichartigen Molekülen (Isotopen), dann kann man aus der gemessenen Strahlung auf die Bewegung der Atome schließen. Mit dieser Methode gelang es dem Forscherteam erstmals, Informationen über die Zeitentwicklung des Moleküls zu erhalten - und zwar schon mit einzelnen, extrem kurzen Laserpulsen (Science Express, 2. März 2006).

... mehr zu:
»Elektron »Laserpuls »Molekül


Die Messung von zeitabhängigen Abläufen in Molekülen wurde in den letzten Jahrzehnten durch die ständige Verbesserung der Lasertechnologie revolutioniert. Einen gewaltigen Fortschritt bedeuteten Femtosekundenpulse: Extrem kurze Laserblitze, die nur wenige Tausendstel einer Billiardstel Sekunde (10-15 s) dauern. Das Licht legt in dieser Zeit nur tausendstel Millimeter zurück. Zum Vergleich: Während der normalen Verschlusszeit einer Fotokamera (1/60 s) schafft Licht die Strecke zwischen Berlin und New York. Mit Femtosekundenpulsen konnten Nobelpreisträger Ahmed Zewail und andere vor etwa 20 Jahren erstmals den Zeitverlauf chemischer Reaktionen in Echtzeit verfolgen. Ihre Experimente basierten stets auf dem Pump-Probe-Prinzip: Ein Laserpuls startet eine Reaktion (Pump), ein zweiter Puls macht eine Momentaufnahme des Moleküls (Probe). "Filmen" kann man die zeitlichen Vorgänge im Molekül, indem man hintereinander viele Einzelaufnahmen mit unterschiedlichen Verzögerungszeiten zwischen Pumppuls und Probepuls herstellt.

Doch die bislang schnellsten Messungen zur Moleküldynamik wurden jetzt mit einem neuen Messverfahren am Imperial College London durchgeführt (Blackett Laboratory Laser Consortium, Direktor Prof. Jon Marangos). Die Grundlage dafür bildet eine Theorie, die von Forschern der Max-Planck-Gesellschaft um Dr. Manfred Lein ausgearbeitet wurde. In den neuartigen Experimenten wird nur ein einzelner Femtosekunden-Laserpuls auf die Probe geschickt. Dieser Puls erzeugt ein elektrisches Feld, das ausreicht, um den bestrahlten Molekülen zu gewissen Zeitpunkten ein Elektron zu entreißen. So wird in dem aus dem Gleichgewicht geratenen Molekülrumpf ein Bewegungsablauf angestoßen. Weil das Feld des Laserpulses periodisch die Richtung wechselt, kann es das freie Elektron zum Ion zurücktreiben. So können sich Elektron und Molekülrumpf wieder vereinigen - und dabei ein hochfrequentes UV-Photon aussenden. Dieser Prozess - und damit die Intensität der UV-Emission - wird um so unwahrscheinlicher, je weiter sich das Molekül in der Zwischenzeit von der Anfangskonfiguration entfernt hat. In der Sprache der Quantenmechanik: Die Wahrscheinlichkeit für Rekombination hängt vom Überlapp zwischen Anfangs- und Endwellenfunktion der Atombewegung ab. Durch Messung der Intensität des UV-Lichtes kann man also auf die zeitliche Entwicklung des Moleküls schließen.

Leider wird die Intensität der ausgesandten UV-Strahlung neben der Kerndynamik noch von vielen anderen Faktoren beeinflusst, zum Beispiel von der Wahrscheinlichkeit für die Ionisation des Moleküls. Dieses Problem umgingen die Forscher mit einem Trick: Sie betrachteten die Spektren zweier verschieden schwerer Isotope eines Moleküls. Isotope haben weitgehend identische Eigenschaften; sie unterscheiden sich nur durch die Masse der Atomkerne und führen deshalb unterschiedlich schnelle Kernbewegungen aus. Die jetzt veröffentlichten Experimente vergleichen zum einen die Spektren von Wasserstoffmolekülen (H2) mit denen doppelt so schwerer Deuteriummoleküle (D2) (s. Abb.), zum anderen werden die Spektren der Methanisotope CH4 und CD4 gegenübergestellt.

Bei der Messung der zeitlichen Entwicklung des Moleküls nutzten die Wissenschaftler einen glücklichen Umstand: Schon ein einziger Laserpuls erzeugt ein ganzes Spektrum an UV-Frequenzen, wobei die Frequenz des UV-Lichtes der Zeitdauer zugeordnet werden kann, die ein zurückkehrendes Elektron "im Freien" verbracht hat. Die höchsten Frequenzen stammen von den Elektronen, die am längsten unterwegs waren. Die Zeitauflösung der Messung ist also durch die Differenz benachbarter UV-Frequenzen im Spektrum bestimmt und liegt bei etwa einem Zehntel einer Femtosekunde. Durch Zuordnung von Frequenz und Zeit kann man aus den Spektren zweier unterschiedlicher Isotope die Zeitentwicklung rekonstruieren. Diese Aufgabe wurde im Falle des Wasserstoffexperiments mit Hilfe eines aufwändigen genetischen Algorithmus per Computer erledigt. Die genaue Analyse der Methandaten ist wesentlich komplizierter und steht noch aus.

Ein wesentlicher Vorteil der neuen Methode gegenüber dem traditionellen Pump-Probe-Prinzip besteht darin, dass schon ein einzelner Laserpuls genügt, um ein ganzes Intervall an Verzögerungszeiten abzutasten. Das vielfache Wiederholen des Experiments mit unterschiedlichen Pump-Probe-Abständen entfällt. Die Erstautorin der Originalveröffentlichung, Dr. Sarah Baker, meint: "We are very excited by these results, not only because we have ‘watched’ motion occurring faster than was previously possible, but because we have achieved this using a compact and simple technique that will make such study accessible to scientists around the world."

Originalveröffentlichung:

S. Baker, J. Robinson, C.A. Haworth, H. Teng, R. A. Smith, C.C. Chirilã, M. Lein, J.W.G. Tisch, and J.P. Marangos
Probing proton dynamics in molecules on an attosecond timescale
Science Express, 2 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik