Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnellste Messung von Molekülvibrationen

03.03.2006


Heidelberger Max-Planck-Forscher und britische Wissenschaftler verfolgen die Bewegung von Atomkernen in Molekülen mit einer Rekord-Zeitauflösung


Rohdaten der gemessenen UV-Strahlung, die von Wasserstoff (H2)- bzw. Deuteriummolekülen (D2) unter dem Einfluss eines starken Laserpulses emittiert wird. Zunehmende Pixelnummer entspricht abnehmender UV-Wellenlänge. Die stärkere Intensität des D2-Signals spiegelt die langsamere Vibration im Vergleich zu H2 wider. Bild: Imperial College London



Werden Atome oder Moleküle von einem kurzen intensiven Laserpuls getroffen, geben sie hochfrequente Strahlung im extremen UV-Bereich ab. In Molekülen wird dieser Prozess von den Schwingungen der Atome beeinflusst. Vergleicht man die Spektren von unterschiedlich schweren, aber sonst gleichartigen Molekülen (Isotopen), dann kann man aus der gemessenen Strahlung auf die Bewegung der Atome schließen. Mit dieser Methode gelang es dem Forscherteam erstmals, Informationen über die Zeitentwicklung des Moleküls zu erhalten - und zwar schon mit einzelnen, extrem kurzen Laserpulsen (Science Express, 2. März 2006).

... mehr zu:
»Elektron »Laserpuls »Molekül


Die Messung von zeitabhängigen Abläufen in Molekülen wurde in den letzten Jahrzehnten durch die ständige Verbesserung der Lasertechnologie revolutioniert. Einen gewaltigen Fortschritt bedeuteten Femtosekundenpulse: Extrem kurze Laserblitze, die nur wenige Tausendstel einer Billiardstel Sekunde (10-15 s) dauern. Das Licht legt in dieser Zeit nur tausendstel Millimeter zurück. Zum Vergleich: Während der normalen Verschlusszeit einer Fotokamera (1/60 s) schafft Licht die Strecke zwischen Berlin und New York. Mit Femtosekundenpulsen konnten Nobelpreisträger Ahmed Zewail und andere vor etwa 20 Jahren erstmals den Zeitverlauf chemischer Reaktionen in Echtzeit verfolgen. Ihre Experimente basierten stets auf dem Pump-Probe-Prinzip: Ein Laserpuls startet eine Reaktion (Pump), ein zweiter Puls macht eine Momentaufnahme des Moleküls (Probe). "Filmen" kann man die zeitlichen Vorgänge im Molekül, indem man hintereinander viele Einzelaufnahmen mit unterschiedlichen Verzögerungszeiten zwischen Pumppuls und Probepuls herstellt.

Doch die bislang schnellsten Messungen zur Moleküldynamik wurden jetzt mit einem neuen Messverfahren am Imperial College London durchgeführt (Blackett Laboratory Laser Consortium, Direktor Prof. Jon Marangos). Die Grundlage dafür bildet eine Theorie, die von Forschern der Max-Planck-Gesellschaft um Dr. Manfred Lein ausgearbeitet wurde. In den neuartigen Experimenten wird nur ein einzelner Femtosekunden-Laserpuls auf die Probe geschickt. Dieser Puls erzeugt ein elektrisches Feld, das ausreicht, um den bestrahlten Molekülen zu gewissen Zeitpunkten ein Elektron zu entreißen. So wird in dem aus dem Gleichgewicht geratenen Molekülrumpf ein Bewegungsablauf angestoßen. Weil das Feld des Laserpulses periodisch die Richtung wechselt, kann es das freie Elektron zum Ion zurücktreiben. So können sich Elektron und Molekülrumpf wieder vereinigen - und dabei ein hochfrequentes UV-Photon aussenden. Dieser Prozess - und damit die Intensität der UV-Emission - wird um so unwahrscheinlicher, je weiter sich das Molekül in der Zwischenzeit von der Anfangskonfiguration entfernt hat. In der Sprache der Quantenmechanik: Die Wahrscheinlichkeit für Rekombination hängt vom Überlapp zwischen Anfangs- und Endwellenfunktion der Atombewegung ab. Durch Messung der Intensität des UV-Lichtes kann man also auf die zeitliche Entwicklung des Moleküls schließen.

Leider wird die Intensität der ausgesandten UV-Strahlung neben der Kerndynamik noch von vielen anderen Faktoren beeinflusst, zum Beispiel von der Wahrscheinlichkeit für die Ionisation des Moleküls. Dieses Problem umgingen die Forscher mit einem Trick: Sie betrachteten die Spektren zweier verschieden schwerer Isotope eines Moleküls. Isotope haben weitgehend identische Eigenschaften; sie unterscheiden sich nur durch die Masse der Atomkerne und führen deshalb unterschiedlich schnelle Kernbewegungen aus. Die jetzt veröffentlichten Experimente vergleichen zum einen die Spektren von Wasserstoffmolekülen (H2) mit denen doppelt so schwerer Deuteriummoleküle (D2) (s. Abb.), zum anderen werden die Spektren der Methanisotope CH4 und CD4 gegenübergestellt.

Bei der Messung der zeitlichen Entwicklung des Moleküls nutzten die Wissenschaftler einen glücklichen Umstand: Schon ein einziger Laserpuls erzeugt ein ganzes Spektrum an UV-Frequenzen, wobei die Frequenz des UV-Lichtes der Zeitdauer zugeordnet werden kann, die ein zurückkehrendes Elektron "im Freien" verbracht hat. Die höchsten Frequenzen stammen von den Elektronen, die am längsten unterwegs waren. Die Zeitauflösung der Messung ist also durch die Differenz benachbarter UV-Frequenzen im Spektrum bestimmt und liegt bei etwa einem Zehntel einer Femtosekunde. Durch Zuordnung von Frequenz und Zeit kann man aus den Spektren zweier unterschiedlicher Isotope die Zeitentwicklung rekonstruieren. Diese Aufgabe wurde im Falle des Wasserstoffexperiments mit Hilfe eines aufwändigen genetischen Algorithmus per Computer erledigt. Die genaue Analyse der Methandaten ist wesentlich komplizierter und steht noch aus.

Ein wesentlicher Vorteil der neuen Methode gegenüber dem traditionellen Pump-Probe-Prinzip besteht darin, dass schon ein einzelner Laserpuls genügt, um ein ganzes Intervall an Verzögerungszeiten abzutasten. Das vielfache Wiederholen des Experiments mit unterschiedlichen Pump-Probe-Abständen entfällt. Die Erstautorin der Originalveröffentlichung, Dr. Sarah Baker, meint: "We are very excited by these results, not only because we have ‘watched’ motion occurring faster than was previously possible, but because we have achieved this using a compact and simple technique that will make such study accessible to scientists around the world."

Originalveröffentlichung:

S. Baker, J. Robinson, C.A. Haworth, H. Teng, R. A. Smith, C.C. Chirilã, M. Lein, J.W.G. Tisch, and J.P. Marangos
Probing proton dynamics in molecules on an attosecond timescale
Science Express, 2 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise