Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster künstlicher Stern leuchtet am südlichen Nachthimmel

23.02.2006


Neuartige Laserleitstern-Anlage verbessert Beobachtungsmöglichkeiten am Very Large Telescope


Das Teleskop Yepun am Paranal-Observatorium mit der ersten aktiven Laserleitstern-Anlage. Bild: Stefan Seip (www.astromeeting.de)


Der Laserstrahl des Yepun-Teleskops auf dem Weg zur 90 Kilometer hohen Natriumschicht in der Atmosphäre. Bild: Sylvain Oberti (ESO)



In der Atacamawüste Chiles, dem Standort des Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO), haben Wissenschaftler einen weiteren Meilenstein auf dem Weg zur Erforschung feinster Details im Universum erreicht. Nach mehrjährigem Forschen und Entwickeln gelang es ihnen jetzt erstmalig, einen künstlichen Stern am Himmel der südlichen Hemisphäre zu erzeugen. Dieser künstliche Laserleitstern wird die verschiedenen am Very Large Telescope betriebenen Adaptiven Optikgeräte mit Licht versorgen. Mit Adaptiver Optik lassen sich die durch Luftturbulenzen bedingten Unschärfen in Himmelsaufnahmen in Echtzeit korrigieren. War diese Korrekturtechnik bisher auf die Beobachtung weniger Himmelsauschnitte beschränkt, so ist diese nun dank des Laserleitsterns fast am ganzen Nachthimmel einsetzbar.

... mehr zu:
»Astronomie »ESO »Laserleitstern »VLT


Am 28. Januar 2006 um 23:07 Uhr lokaler Zeit in Chile war es so weit: Ein Laserstrahl mit einer Leistung von einigen Watt wurde von Yepun, einem der vier Teleskope des Very Large Telescope VLT, in den Nachthimmel projiziert und erzeugte in einer Höhe von 90 Kilometern einen künstlichen Stern. Dass dies nun erstmals an einem der besten Observatorien der Welt gelungen ist, wurde mit großer Freude von den im Kontrollraum anwesenden Wissenschaftlern und Ingenieuren begrüßt.

Fünf Jahre gemeinsamer Arbeit eines Teams von Wissenschaftlern der Max-Planck-Institute für extraterrestrische Physik in Garching und für Astronomie in Heidelberg sowie der Europäischen Südsternwarte ESO fanden an diesem Tag ihren erfolgreichen Abschluss. Das Resultat: Ein 50 Zentimeter im Durchmesser und im gelben Natriumlicht leuchtender Laserstrahl verließ die VLT-Laserleitsternanlage des Yepun-Teleskops und erzeugte in der Natriumschicht der Atmosphäre in einer Höhe von 90 Kilometern einen künstlichen Laserstern.

"Wir erleben damit den Beginn einer neuen Generation von ESO-Teleskopen, die mit Laserleitsternen und Adaptiver Optik ausgestattet sind", so Domenico Bonaccini Calia, Leiter der Laserleitstern-Gruppe der ESO.

Herkömmliche Teleskope, die von der Erde aus das Universum betrachten, sind in ihrer Fähigkeit, scharfe Bilder vom Nachthimmel aufzunehmen, durch die "störende" Erdatmosphäre stark eingeschränkt. Eine Adaptive Optik ermöglicht es jedoch, Bilder in einer solchen Schärfe aufzunehmen, als befände sich das Teleskop im Weltraum. Dies erlaubt es den Astronomen, wesentlich feinere Details in ihren Beobachtungsobjekten wie fernen Sonnensystemen zu studieren.

Damit die Adaptive Optik arbeiten kann, benötigt sie ein Referenzsignal, welches von einem hellen Stern nahe dem Beobachtungsobjekt, oder falls ausreichend hell, vom Beobachtungsobjekt selbst stammt. Dadurch wird allerdings der Einsatzbereich der Adaptiven Optik sehr stark eingeschränkt, da in den meisten Fällen keine ausreichend hellen Referenzsterne im Gesichtsfeld zu finden sind. Dieser Mangel lässt sich mit Hilfe eines geeignet starken Lasers überwinden, der an jeder Stelle am Himmel einen Kunststern erzeugen kann. Das Licht dieses Laserleitsterns wird dann letztlich von der Adaptiven Optik zur Bildkorrektur genutzt.

Nun ist nicht jeder Laser dafür geeignet, die in 90 Kilometer Höhe befindliche Natriumschicht zum Leuchten anzuregen. Dies gelang nun mit dem von den beiden Max-Planck-Instituten gebauten PARSEC-Laser, der kontinuierlich Licht mit einer Wellenlänge von 589 Nanometern erzeugt. Die Entwicklung von PARSEC baut auf Erfahrungen auf, die von den Max-Planck-Wissenschaftlern mit dem Prototypen ALFA (Adaptive Optics with a Laser For Astronomy) am Calar Alto Observatorium in Spanien in den Jahren 1996 bis 1999 gesammelt wurden. Der PARSEC-Laser befindet sich in einem Reinraum-Labor unterhalb des Teleskops. Eine Lichtfaser überträgt das Laserlicht zu einem Projektionsteleskop, das sich in der Mitte über dem VLT befindet. "Es ist ein sehr erhebendes, ja begeisterndes Gefühl zu sehen, wie präzise und stabil die ganze Nacht über dieser Laser arbeitet", so Ric Davies, der PARSEC Projektleiter.

Dem ersten Laserlicht folgten zwölf Tage intensiver Tests, die hauptsächlich dem Zusammenspiel zwischen Laserleitstern und den beiden am Yepun-Teleskop vorhandenen Adaptiven Optiken NAOS und MACAO dienten.

In den frühen Morgenstunden des 9. Februars war es schließlich so weit: Die MACAO Adaptive Optik mit Laserleitstern versorgte den am Max-Planck-Institut für extraterrestrische Physik gebauten 3D-Spektrographen SPIFFI mit korrigiertem Sternenlicht. Eine Nacht später gelang die Korrektur mit Laserstern und NAOS, wovon die an den Max-Planck-Instituten für Astronomie und extraterrestrische Physik gebaute Kamera CONICA profitieren konnte.

"Ein derartiger Erfolg in solch kurzer Zeit ist hervorragend und eine Anerkennung für alle, die in den vergangenen Jahren hart dafür gearbeitet haben", so Ric Davies.

In der zweiten Phase der Inbetriebnahme, die im Frühjahr 2006 beginnt, wird man sich darum kümmern, den Betrieb der gesamten Anlage - Adaptive Optik, Laserleitstern, wissenschaftliche Kamera bzw. Spektrograph - weiter zu optimieren. In dieser zweiten Phase wird auch das am Max-Planck-Institut für Astronomie in Heidelberg gebaute LIDAR-Gerät zur genauen Vermessung der Natriumschicht in der Atmosphäre erstmals eingesetzt. Wird diese zweite Phase ebenfalls erfolgreich abgeschlossen, steht die Laserleiteinrichtung ab Herbst 2006 allen Astronomen zur Verfügung.

Die am VLT gemachten Erfahrungen beim Betrieb eines künstlichen Laserleitsterns sind von essentieller Bedeutung für das Design von Teleskopen der nächsten Generation mit Spiegeln von 30 bis 60 Metern im Durchmesser.

Die Laserleitstern-Anlage wurde entwickelt und gebaut vom Max-Planck-Institut für extraterrestrische Physik in Garching bei München (MPE), dem Max-Planck-Institut für Astronomie in Heidelberg (MPIA) und der Europäischen Südsternwarte (ESO).

Die Mitglieder des Forschungs- und Entwicklungsteams

Max-Planck-Institut für extraterrestrische Physik:
R. Davies, S. Rabien, T. Ott, J. Li, S. Kellner, S. Huber, W. Zaglauer, A. Goldbrunner, R. Genzel.

Max-Planck-Institut für Astronomie:
S. Hippler, U. Neumann, D. Butler, R.-R. Rohloff, B. Grimm, H.-W. Rix, T. Henning.

ESO:
D. Bonaccini Calia, W. Hackenberg, M. Cullum, M. Dimmler, I. Guidolin, C. Araujo, E. Allaert, D. Popovic, M. Comin, M. Quattri, E. Brunetto, F. Koch, A. Silber, J-L. Alvarez, M. Tapia, E. Bendek, J. Quentin, G. Fischer.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Astronomie ESO Laserleitstern VLT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten