Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Forscher haben Energie-Quantisierung an künstlichen Quantenringen untersucht

25.10.2001


Physiker der Gruppe um Klaus Ensslin haben mit Hilfe eines so genannten Rasterkraftmikroskops Ringstrukturen im Nanometerbereich auf Halbleiterbasis hergestellt und daran die Energie-Quantisierung untersucht. Unter dem Titel "Energy spectra of quantum rings" veröffentlichen die ETH-Forscher nun in der "Nature"-Ausgabe vom 25. Oktober Resultate des Projekts, das möglicherweise für die Quanten-Informationsverarbeitung von Bedeutung sein könnte.


Elektrischer Strom in Halbleitern entsteht durch Elektronen, die durch leitende Gebiete flitzen. Beobachtet man solche Elektronen in sehr kleinen Strukturen, so stellt man fest, dass sie sich nicht immer wie Teile verhalten, sondern wie Wellen, ähnlich denen auf einer Wasseroberfläche. Elektronenwellen können sich, ebenso wie Wasser- oder Lichtwellen, überlagern und sich an bestimmten Orten gegenseitig auslöschen oder verstärken - ein Phänomen, das als Interferenz bekannt ist.

Pflanzt sich eine Elektronenwelle in einem ringförmigen Leiter fort, so kann sie auch mit sich selbst interferieren. Nur wenn der Umfang des Rings ein ganzzahliges Vielfaches der Wellenlänge ist, kann die Welle auf Dauer im Ring existieren und man spricht von einem "quantisierten Energieniveau", ähnlich wie bei den seit langem bekannten Energieniveaus in Atomen und Molekülen. Andreas Fuhrer, Silvia Lüscher, Thomas Ihn und Klaus Ensslin von der ETH Zürich und der kürzlich von der ETH nach Freiburg berufene Thomas Heinzel haben demonstriert, dass man diese Energie-Quantisierung in Ringen, die in der Natur zum Beispiel im ringförmigen Benzolmolekül vorkommt, auch künstlich erzeugen kann, indem man die Elektronen in einer sehr kleinen Halbleiterstruktur, einer sogenannten Nanostruktur, interferieren lässt.


Die Wissenschaftler beobachteten nun den Strom durch den Ring in kleinen Magnetfeldern und konnten so die quantisierten Energien messen und deren Verhalten mit bereits bestehenden Theorien vergleichen. Obwohl diese Theorien in vielen Aspekten bestätigt wurden, werfen die Experimente eine Reihe neuer Fragen auf. Der entscheidende Schritt bei diesem Experiment bestand in der Herstellung sehr kleiner Ringe aus dem Halbleiter Galliumarsenid. Dabei wird durch lokale Oxidation der Halbleiteroberfläche eine elektrisch leitende Ringstruktur mit einem Radius von 1/10.000tel Millimeter erzeugt. Zum Vergleich: etwa 100 solcher Ringe passen auf die Breite eines menschlichen Haares. Zur lokalen Oxidation verwendeten die Wissenschaftler ein so genanntes Rasterkraft-Mikroskop, mit dem Strukturen bis zur Größe atomarer Dimensionen abgebildet werden können. Da Galliumarsenid häufig zur Produktion von kommerziellen Mikrochips, beispielsweise in Handys, verwendet wird, enthält dieses Experiment auch einen technologischen Aspekt: Die sehr kleinen Chips der Zukunft werden, völlig anders als bisher, nicht mehr auf der Basis funktionieren, dass Elektronen Teilchen sind, sondern ihre Welleneigenschaften nutzen.

Kontaktperson:
Prof. Dr. Klaus Ensslin
Laboratorium für Festkörperphysik
Tel. +41 (0)1-633 22 09
Fax +41 (0)1-633 11 46
E-Mail: ensslin@phys.ethz.ch

Beatrice Huber | idw
Weitere Informationen:
http://www.cc.ethz.ch/medieninfo

Weitere Berichte zu: ETH-Forscher Energie-Quantisierung Galliumarsenid

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics