Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie aus Schwarzen Löchern

23.10.2001


Tübinger Astronomen werten erstaunliche Beobachtungen des Röntgensatelliten XMM aus


Selbst Astronomen stellen sich Schwarze Löcher im Weltall manchmal wie Monster vor. Schwarze Löcher sind extrem kompakte Himmelsobjekte mit so starken Gravitationsfeldern, dass nichts ihrer Anziehungskraft entfliehen kann - nicht einmal Licht. Doch diese Monster könnten nach neuesten Erkenntnissen noch unberechenbarer sein als bisher angenommen. Das haben die Auswertungen von Messungen ergeben, die der bislang größte in Europa gebaute Röntgensatellit XMM-Newton geliefert hat. Am Bau der wissenschaftlichen Instrumente an Bord des Satelliten waren Wissenschaftler, Techniker und Studierende vom Institut für Astronomie und Astrophysik der Universität Tübingen (IAAT) beteiligt. Dr. Jörn Wilms, Prof. Dr. Rüdiger Staubert und Dr. Eckhard Kendziorra vom IAAT haben nun Daten, die der Röntgensatellit in der der Universität Tübingen zur Verfügung stehenden Messzeit erhoben hat, in Zusammenarbeit mit einem internationalen Astronomenteam ausgewertet. Für die Tübinger Forscher beobachtete der XMM-Newton-Satellit im Juni 2000 die Spiralgalaxie MCG-6-30-15, die sich in einer Entfernung von 100 Millionen Lichtjahren von der Erde befindet.

Nach aufwändiger Analyse der Daten ziehen die Forscher die Schlussfolgerung, dass in Schwarzen Löchern nicht nur Energie verschwindet, sondern auch ständig daraus entweicht. "Mit den genauen Messungen von XMM-Newton haben wir etwas entdeckt, was bisher niemals an einem Schwarzen Loch beobachtet wurde", erklärt Wilms. Die Forschungsergebnisse sind zur Veröffentlichung in den Monthly Notices of the Royal Astronomical Society angenommen worden. Die komplexen Mechanismen Schwarzer Löcher faszinieren die Astronomen schon lange. Wissenschaftler gehen davon aus, dass die meisten Galaxien, unsere Milchstraße eingeschlossen, ein supermassives Schwarzes Loch in ihrem Kern enthalten. In diesen Objekten ist die Masse von einer Milliarde Sonnen auf die Größe eines Sonnensystems komprimiert. Staub und Gas aus der Umgebung des Schwarzen Loches kann in dieses hineinfallen. Diese Materie strömt in der Form einer schnell rotierenden Akkretionsscheibe in das Objekt, einer flachen Scheibe um das Schwarze Loch. Die Reibung in der Akkretionsscheibe lässt eine starke Röntgenstrahlung entstehen. "Die Beobachtungskameras des Satelliten haben ein Spektrum erhalten, eine Art chemischen Fingerabdruck der vorhandenen Elemente. Eines der wichtigsten Elemente ist hierbei das Eisen", erklärt der Physiker Wilms.


Weitere Analysen haben ergeben, dass sich das Eisen im innenliegenden Bereich der Akkretionsscheibe befindet, kurz vor dem Ort, wo Materie im Schwarzen Loch verschwindet. Aber die Stärke und Form der Linie, die von XMM-Newton gemessen wurde, übersteigt bei weitem die, die nach den aufgestellten Modellen für Akkretionsscheiben von supermassiven Schwarzen Löchern erwartet werden konnten. "Das ist wie ein Gummiball, der auf den Boden geworfen wird", sagt Wilms. "Man kennt die Oberflächenbeschaffenheit und kann vermuten, wie und wann der Ball zurückkommen wird. Aber hier kommt der Ball viel schneller zurück, als ob dort eine Energiequelle wäre, wo er hinfällt. Für unser Schwarzes Loch bedeutet das, dass noch etwas anderes die Akkretionsscheibe aufheizt." Die Jagd nach einer passenden Erklärung für die Herkunft dieser zusätzlichen Energie ging weiter.

Theoretische Berechnungen führten das Astronomenteam zu der Erkenntnis, dass das Schwarze Loch selbst rotiert. Nach der Einschätzung des Teams passt nur ein Modell zu den Daten des Satelliten XMM-Newton. Es entspricht einer Theorie, die zwei Astronomen der Cambridge University, Roger Blandford und Roman Znajek, vor 25 Jahren vorgeschlagen haben. Danach kann Rotationsenergie aus einem Schwarzen Loch entweichen, wenn es sich in einem starken magnetischen Feld befindet, das bremsend wirkt. Nach den physikalischen Gesetzen der Thermodynamik sollte die entweichende Energie vom umgebenden Gas aufgenommen werden. "Vielleicht haben wir diesen Effekt eines elektrischen Dynamos zum allerersten Mal gesehen. Energie entweicht durch die Rotation des Schwarzen Loches und wird in den innenliegenden Bereich der Akkretionsscheibe gezogen, sie heizt die Gase auf und bewirkt eine stärkere Röntgenstrahlung", sagt Wilms. An der Vermutung, dass Schwarze-Loch-Monster nicht nur Energie und Materie fressen, sondern auch Energie austritt, haben andere Experten bereits Zweifel angemeldet. "Wir müssen noch weitere Beobachtungen abwarten, um unsere Schlussfolgerungen abzusichern", meint Wilms.

Weitere Informationen:

Dr. Jörn Wilms
Institut für Astronomie und Astrophysik
Abteilung Astronomie
Sand 1
72076 Tübingen
Tel. 0 70 71/2 97 61 28
Wegen Umzugs der Abteilung auch über das Sekretariat: Tel. 0 70 71/2 97 24 86
E-Mail: wilms@astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://astro.uni-tuebingen.de
http://sci.esa.int/xmm
http://legacy.gsfc.nasa.gov/docs/xmm/xmm.html

Weitere Berichte zu: Akkretionsscheibe Astronom Röntgensatellit XMM-Newton

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics