Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie aus Schwarzen Löchern

23.10.2001


Tübinger Astronomen werten erstaunliche Beobachtungen des Röntgensatelliten XMM aus


Selbst Astronomen stellen sich Schwarze Löcher im Weltall manchmal wie Monster vor. Schwarze Löcher sind extrem kompakte Himmelsobjekte mit so starken Gravitationsfeldern, dass nichts ihrer Anziehungskraft entfliehen kann - nicht einmal Licht. Doch diese Monster könnten nach neuesten Erkenntnissen noch unberechenbarer sein als bisher angenommen. Das haben die Auswertungen von Messungen ergeben, die der bislang größte in Europa gebaute Röntgensatellit XMM-Newton geliefert hat. Am Bau der wissenschaftlichen Instrumente an Bord des Satelliten waren Wissenschaftler, Techniker und Studierende vom Institut für Astronomie und Astrophysik der Universität Tübingen (IAAT) beteiligt. Dr. Jörn Wilms, Prof. Dr. Rüdiger Staubert und Dr. Eckhard Kendziorra vom IAAT haben nun Daten, die der Röntgensatellit in der der Universität Tübingen zur Verfügung stehenden Messzeit erhoben hat, in Zusammenarbeit mit einem internationalen Astronomenteam ausgewertet. Für die Tübinger Forscher beobachtete der XMM-Newton-Satellit im Juni 2000 die Spiralgalaxie MCG-6-30-15, die sich in einer Entfernung von 100 Millionen Lichtjahren von der Erde befindet.

Nach aufwändiger Analyse der Daten ziehen die Forscher die Schlussfolgerung, dass in Schwarzen Löchern nicht nur Energie verschwindet, sondern auch ständig daraus entweicht. "Mit den genauen Messungen von XMM-Newton haben wir etwas entdeckt, was bisher niemals an einem Schwarzen Loch beobachtet wurde", erklärt Wilms. Die Forschungsergebnisse sind zur Veröffentlichung in den Monthly Notices of the Royal Astronomical Society angenommen worden. Die komplexen Mechanismen Schwarzer Löcher faszinieren die Astronomen schon lange. Wissenschaftler gehen davon aus, dass die meisten Galaxien, unsere Milchstraße eingeschlossen, ein supermassives Schwarzes Loch in ihrem Kern enthalten. In diesen Objekten ist die Masse von einer Milliarde Sonnen auf die Größe eines Sonnensystems komprimiert. Staub und Gas aus der Umgebung des Schwarzen Loches kann in dieses hineinfallen. Diese Materie strömt in der Form einer schnell rotierenden Akkretionsscheibe in das Objekt, einer flachen Scheibe um das Schwarze Loch. Die Reibung in der Akkretionsscheibe lässt eine starke Röntgenstrahlung entstehen. "Die Beobachtungskameras des Satelliten haben ein Spektrum erhalten, eine Art chemischen Fingerabdruck der vorhandenen Elemente. Eines der wichtigsten Elemente ist hierbei das Eisen", erklärt der Physiker Wilms.


Weitere Analysen haben ergeben, dass sich das Eisen im innenliegenden Bereich der Akkretionsscheibe befindet, kurz vor dem Ort, wo Materie im Schwarzen Loch verschwindet. Aber die Stärke und Form der Linie, die von XMM-Newton gemessen wurde, übersteigt bei weitem die, die nach den aufgestellten Modellen für Akkretionsscheiben von supermassiven Schwarzen Löchern erwartet werden konnten. "Das ist wie ein Gummiball, der auf den Boden geworfen wird", sagt Wilms. "Man kennt die Oberflächenbeschaffenheit und kann vermuten, wie und wann der Ball zurückkommen wird. Aber hier kommt der Ball viel schneller zurück, als ob dort eine Energiequelle wäre, wo er hinfällt. Für unser Schwarzes Loch bedeutet das, dass noch etwas anderes die Akkretionsscheibe aufheizt." Die Jagd nach einer passenden Erklärung für die Herkunft dieser zusätzlichen Energie ging weiter.

Theoretische Berechnungen führten das Astronomenteam zu der Erkenntnis, dass das Schwarze Loch selbst rotiert. Nach der Einschätzung des Teams passt nur ein Modell zu den Daten des Satelliten XMM-Newton. Es entspricht einer Theorie, die zwei Astronomen der Cambridge University, Roger Blandford und Roman Znajek, vor 25 Jahren vorgeschlagen haben. Danach kann Rotationsenergie aus einem Schwarzen Loch entweichen, wenn es sich in einem starken magnetischen Feld befindet, das bremsend wirkt. Nach den physikalischen Gesetzen der Thermodynamik sollte die entweichende Energie vom umgebenden Gas aufgenommen werden. "Vielleicht haben wir diesen Effekt eines elektrischen Dynamos zum allerersten Mal gesehen. Energie entweicht durch die Rotation des Schwarzen Loches und wird in den innenliegenden Bereich der Akkretionsscheibe gezogen, sie heizt die Gase auf und bewirkt eine stärkere Röntgenstrahlung", sagt Wilms. An der Vermutung, dass Schwarze-Loch-Monster nicht nur Energie und Materie fressen, sondern auch Energie austritt, haben andere Experten bereits Zweifel angemeldet. "Wir müssen noch weitere Beobachtungen abwarten, um unsere Schlussfolgerungen abzusichern", meint Wilms.

Weitere Informationen:

Dr. Jörn Wilms
Institut für Astronomie und Astrophysik
Abteilung Astronomie
Sand 1
72076 Tübingen
Tel. 0 70 71/2 97 61 28
Wegen Umzugs der Abteilung auch über das Sekretariat: Tel. 0 70 71/2 97 24 86
E-Mail: wilms@astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://astro.uni-tuebingen.de
http://sci.esa.int/xmm
http://legacy.gsfc.nasa.gov/docs/xmm/xmm.html

Weitere Berichte zu: Akkretionsscheibe Astronom Röntgensatellit XMM-Newton

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schwerste Atome im Rampenlicht
29.09.2016 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit
29.09.2016 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Heidelberg Laureate Forum: Eine Veranstaltung mit Zukunft

29.09.2016 | Veranstaltungen

Wissenschaftsjahr Meere und Ozeane - Oktober 2016

29.09.2016 | Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schwerste Atome im Rampenlicht

29.09.2016 | Physik Astronomie

Zelluläres Kräftemessen

29.09.2016 | Interdisziplinäre Forschung

K 2016: Von OLED-Verkapselung bis Plagiatschutz

29.09.2016 | Messenachrichten