Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heißes und sehr heißes Gas um Schwarze Löcher

19.10.2001


Henk Spruit, Bernhard Deufel, Kees Dullemond


Abbildung 1: So etwa würde die Umgebung eines Schwarzen Lochs in einem Röntgendoppelstern nach der neuen Theorie aussehen. Die Akkretionsscheibe (braun und rot dargestellt) ist undurchsichtig und vergleichsweise kühl, mit Temperaturen bis 1 Million Grad. Näher am Loch im Zentrum gibt es ein sehr heisses, transparentes Gas (mehr als 100 Milliarden Grad, im Bild dargestellt durch den blauen `Dunst’). Im weissen Gebiet leuchtet die Scheibe auf durch die Wechselwirkung mit dem umgebenden blauen Dunst. In der Theorie spielt dieses Wechselwirkungsgebiet eine zentrale Rolle, und verursacht den grössten Teil der beobachteten Röntgenstrahlung.


Es gibt wahrscheinlich Milliarden Schwarzer Löcher in unserer Galaxis, die jedoch, weil schwarz, schwer zu entdecken sind. Sie verraten ihre Anwesenheit aber in spektakulärer Weise, wenn sie einen Begleitstern in der Nähe haben, der ihnen Masse spendiert. In diesem Fall werden Sie helle Röntgensterne: die enorm starken Schwerekräfte heizen das einfallende Gas dermassen auf, dass es in Röntgenstrahlen glüht.

Aber die Beobachtungen dieser Röntgenstrahlen geben einige schwierige Rätsel auf. Nach der gängigen Theorie erwartet man, dass das ins Loch strömende Gas eine undurchsichtige, leuchtende Scheibe bildet, eine sog. Akkretionsscheibe (Abb.1), mit einer Temperatur bis etwa 10 Millionen Grad. Die beobachteten Röntgenstrahlen zeigen, dass dies in den meisten Fällen nicht stimmt: das im Röntgenlicht strahlende Gas ist 1 Milliarde Grad heiss statt Millionen Grad, und transparent statt undurchsichtig. Es ist, als ob die inneren Teile der Akkretionsscheibe fehlen und ersetzt werden durch ein verdünntes, sehr heisses Plasma.



Die am Max-Planck-Institut für Astrophysik entwickelte neue Theorie erklärt nun, warum dies so ist. Sie beschreibt, wie die inneren Teile der kühlen Scheibe umgewandelt werden in ein heisses Plasma. Durch die Gravitationskräfte auf eine Temperatur über 100 Milliarden Grad geheizt, ist dieses Plasma in direktem Kontakt mit der kühlen Scheibe. Es heizt dessen Innenrand auf (weisse Gebiete in Abb.1), der dadurch in harten Röntgenstrahlen aufleuchtet (das Plasma selbst ist transparent und leuchtet nur schwach). Der wichtigste Teil der neuen Theorie erklärt nun, wie dieser Bereich `verdampfen’ kann, und wie das verdampfende Gas Teil des heissen Plasmas wird (in Abb.1 blau dargestellt). Schliesslich wird das Gas dann vom Schwarzen Loch geschluckt (s. auch die Skizze in Abb.2).

Abbildung 2: Skizze des Übergangs von einer kühlen Akkretionsscheibe in ein heisses `Zwei-Temperatur-Plasma’ (auch ’ion supported accretion flow’ oder ISAF). Die energetischen Ionen des ISAF heizen die kühle Scheibe (Ausschnitt rechts), und erzeugen dort harte Röntgenstrahlung. Diese geheizte Scheibe liefert auch die Masse für das Plasma im ISAF.


Das Schönste an der Theorie ist, dass sie nur Gebrauch macht von den schon lange bekannten Eigenschaften von ionisierten Plasmen, insbesondere von der Art, wie die Elektronen und Ionen eines sog. `Zwei-Temperaturen-Plasmas’ durch elektrische Kräfte Energie austauschen. Die Theorie ist eine ziemlich direkte Folge dieser Eigenschaften, aber eine, die bis jetzt übersehen wurde.



Abbildung 3: Wo ist in Bild 1 das Schwarze Loch? Es ist unsichtbar, denn weder reflektiert es Strahlung, noch strahlt es selbst. Der Ort des Lochs ist hier angedeutet durch eine gestrichelte Linie an der Stelle des sog. Horizontes. Dieser ist die letzte Fläche, von woher Strahlung aus der Umgebung des Lochs uns noch erreichen kann.


Weitere Informationen:

  • B. Deufel, C.P. Dullemond, H.C. Spruit, X-Ray spectra from accretion disks illuminated by protons, Preprint astro-ph/0108496

  • H.C. Spruit, B. Deufel, The transition from a cool disk to an ion supported flow, Preprint astro-ph/0108497


| Max-Planck-Institut für Astrophy
Weitere Informationen:
http://www.mpa-garching.mpg.de/HIGHLIGHT/2001/highlight0110_d.html
http://www.mpa-garching.mpg.de/

Weitere Berichte zu: ABB Akkretionsscheibe ISAF Röntgenstrahl Spruit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der schärfste Laserstrahl der Welt
29.06.2017 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der schärfste Laserstrahl der Welt

Physikalisch-Technische Bundesanstalt entwickelt einen Laser mit nur 10 mHz Linienbreite

So nah an den idealen Laser kam bisher noch keiner: In der Theorie hat ein Laser zwar genau eine einzige Farbe (Frequenz bzw. Wellenlänge). In Wirklichkeit...

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der schärfste Laserstrahl der Welt

29.06.2017 | Physik Astronomie

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften