Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Halbleiter-Quantenoptik

03.02.2006


Physiker der Philipps-Universität Marburg präsentieren Überblicksartikel in Nature Physics



Quantenoptische Effekte in atomaren Systemen wurden in den letzten Jahren mit einer Reihe von Nobelpreisen gewürdigt. Beispiele sind die Bose-Einstein-Kondensation, optische Kühlung von Atomen, optische Fallen und einiges mehr. Für viele praktische und technologische Anwendungen solcher quantenoptischer Effekte, zum Beispiel auch für die technische Realisierung von Quantencomputern, ist es wünschenswert, die quantenoptischen Effekte in Festkörpern, speziell in Halbleitern realisieren zu können. Hier gelang im Jahr 2004 erstmals die so genannte "Vakuum-Rabi-Aufspaltung" in Systemen von Halbleiter-Quantenpunkten.



"Die Realisierung dieses Effekts", so der Marburger Physiker Professor Dr. Stephan W. Koch, "ist ein Ausdruck der starken Kopplung zwischen einzelnen Lichtteilchen und dem Halbleiter. Er ist eine der Voraussetzungen für genaue Untersuchungen, wie sich Lichtteilchen in jenen Halbleiterstrukturen verhalten, die als Basis künftiger Quantencomputer dienen können." Diese Forschungsarbeit ist sehr zukunftsträchtig: Theoretische Konzepte sagen voraus, dass die Leistungsfähigkeit von Quantencomputern diejenige herkömmlicher Rechnersysteme um mehrere Größenordnungen übertreffen wird.

Nun haben Stephan W. Koch und Mackillo Kira, Professoren für Theoretische Halbleiterphysik an der Philipps-Universität Marburg, gemeinsam mit ihren experimentell arbeitenden Kollaborationspartnern an der US-amerikanischen University of Arizona in Tucson, Professorin Dr. Galina Khitrova und Humboldt-Forschungspreisträger Professor Dr. Hyatt Gibbs, auf Einladung des Fachjournals "Nature Physics" einen Übersichtsartikel über die aktuellen Entwicklungen in der weltweiten Forschung verfasst. Unter dem Titel "Vacuum Rabi splitting in semiconductors" (Vakuum-Rabi-Aufspaltung in Halbleitern) erschien er in dessen Februar-Ausgabe (Khitrova, Gibbs, Kira, Koch & Scherer, Nature Physics, Vol. 2, No. 2, Seiten 81 - 90 (2006)).

"Der Schlüsselbegriff für unsere Arbeit ist die ’starke Licht-Materie-Kopplung’", erklärt Juniorprofessor Kira. Dieses Phänomen, das sich besonders gut in Halbleiter-Nanostrukturen (so genannten Quantenpunkten) beobachten lässt, führt zu Effekten wie der Verschränkung von Lichtteilchen (dabei sind die Eigenschaften von Teilchen, auch wenn sich diese an ganz verschiedenen Orten aufhalten, untrennbar miteinander verbunden) oder der Superposition (dabei befindet sich, kaum vorstellbar, ein Teilchen zur selben Zeit in mehreren, unterschiedlichen Zuständen) und erlaubt auch, dass einzelne Lichtteilchen (statt eines ganzen Lichtstrahls) kontrolliert freigesetzt werden können. Effekte wie diese sind grundlegend für die Entwicklung von auf Quantenbasis arbeitenden Computern.

Die materielle Basis für entsprechende Experimente sind die Quantenpunkte: winzige Strukturen von bis zu 10.000 Atomen. Die darin befindlichen Elektronen tragen nur ganz bestimmte, "diskrete" Energiemengen. (Normalerweise nimmt ihre Energie kontinuierliche Werte an.) Quantenpunkte wiederum lassen sich in kaum größere optische Resonatoren einbetten. Solche Resonatoren bestehen aus periodischen Anordnungen zum Beispiel von Löchern in Halbleiterschichten, so genannten photonischen Kristallen, oder aus periodischen Anordnungen verschiedener Halbleitermaterialien, sogenannter Bragg-Reflektoren. Wichtig ist hierbei, dass die Periodizitätslänge gerade die Hälfte der Wellenlänge des verwendeten Lichtes ist. In solche Resonatoren lassen sich nun die Lichtteilchen "einsperren", die ähnlich wie die Elektronen nur über diskrete Energien verfügen. Die in diesem System beobachtbare Wechselwirkung zwischen Elektronen und Lichtteilchen ist es schließlich, die die Physiker untersuchen.

Systeme aus Quantenpunkten und Resonatoren in Halbleiterstrukturen könnten nun den Weg weisen, um eines der bislang größten Probleme auf dem Weg zur Herstellung zu Quantencomputern zu überwinden, nämlich die Dekohärenz. Dieser Begriff beschreibt das Phänomen, dass der definierte Zustand von Lichtteilchen und Elektronen durch deren Kontakt mit der Umgebung gestört wird, also nicht mehr kontrolliert werden kann.

"In der Arbeitsgruppe Theoretische Halbleiterphysik", erklärt Koch, "arbeiten wir seit Jahren daran, bisherige Verfahren zur Herstellung und Untersuchung solcher Systeme zu verbessern, unter anderem, indem wir die Halbleiterstrukturen optimieren." In dem aktuellen Übersichtsartikel in Nature Physics diskutieren er und seine Kollegen nun die bisherigen Fortschritte auf dem Weg zur starken Licht-Materie-Kopplung in Halbleitermaterialien und die experimentelle Beobachtung der Vakuum-Rabi-Aufspaltung und schlagen verschiedene Testverfahren vor, mittels derer die quantenoptische Licht-Materie-Kopplung experimentell überprüft werden kann. Schließlich geben die Physiker aus Marburg und den USA auch einen Ausblick auf die möglichen Anwendungen im Rahmen der Quanteninformationstechnologie und der Herstellung von Quantencomputern.

Kontakt
Professor Dr. Stephan W. Koch
Philipps-Universität Marburg
Fachbereich Physik / Wissenschaftliches Zentrum für Materialwissenschaften
Renthof 5
35032 Marburg
Tel.: (06421) 28 21336
E-Mail: s.w.koch@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Lichtteilchen Physik Quantencomputern Quantenpunkt Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Analyse von Supraleitern
24.10.2017 | Ruhr-Universität Bochum

nachricht Bildung von Magma-Ozeanen auf Exoplaneten erforscht
24.10.2017 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 65 neue genetische Risikomarker für Brustkrebs entdeckt

Manche Familien sind häufiger von Brustkrebs betroffen als andere. Dies kann bislang nur teilweise durch genetische Risikomarker erklärt werden. In einem weltweiten Verbund haben Forscher nun 65 weitere Erbgutvarianten identifiziert, die zum Brustkrebsrisiko beitragen. Die Studie, an der auch Wissenschaftler vom Deutschen Krebsforschungszentrum und dem Universitätsklinikum Heidelberg beteiligt waren, wurde in der Fachzeitschrift Nature veröffentlicht. Die Forscher erwarten, dass die Ergebnisse dazu beitragen, Screeningprogramme und die Früherkennung von Brustkrebs zu verbessern.

Seit Angelina Jolies medienwirksamer Entscheidung, sich vorbeugend die Brüste entfernen zu lassen, ist der genetische Hintergrund von Brustkrebs auch einer...

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fettstoffwechsel beeinflusst Genaktivität

24.10.2017 | Biowissenschaften Chemie

Forscher der Universität Hamburg entdecken Mechanismus zur Verdopplung von Pflanzengenomen

24.10.2017 | Biowissenschaften Chemie

Bakterielle Toxine im Darm

24.10.2017 | Biowissenschaften Chemie