Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Halbleiter-Quantenoptik

03.02.2006


Physiker der Philipps-Universität Marburg präsentieren Überblicksartikel in Nature Physics



Quantenoptische Effekte in atomaren Systemen wurden in den letzten Jahren mit einer Reihe von Nobelpreisen gewürdigt. Beispiele sind die Bose-Einstein-Kondensation, optische Kühlung von Atomen, optische Fallen und einiges mehr. Für viele praktische und technologische Anwendungen solcher quantenoptischer Effekte, zum Beispiel auch für die technische Realisierung von Quantencomputern, ist es wünschenswert, die quantenoptischen Effekte in Festkörpern, speziell in Halbleitern realisieren zu können. Hier gelang im Jahr 2004 erstmals die so genannte "Vakuum-Rabi-Aufspaltung" in Systemen von Halbleiter-Quantenpunkten.



"Die Realisierung dieses Effekts", so der Marburger Physiker Professor Dr. Stephan W. Koch, "ist ein Ausdruck der starken Kopplung zwischen einzelnen Lichtteilchen und dem Halbleiter. Er ist eine der Voraussetzungen für genaue Untersuchungen, wie sich Lichtteilchen in jenen Halbleiterstrukturen verhalten, die als Basis künftiger Quantencomputer dienen können." Diese Forschungsarbeit ist sehr zukunftsträchtig: Theoretische Konzepte sagen voraus, dass die Leistungsfähigkeit von Quantencomputern diejenige herkömmlicher Rechnersysteme um mehrere Größenordnungen übertreffen wird.

Nun haben Stephan W. Koch und Mackillo Kira, Professoren für Theoretische Halbleiterphysik an der Philipps-Universität Marburg, gemeinsam mit ihren experimentell arbeitenden Kollaborationspartnern an der US-amerikanischen University of Arizona in Tucson, Professorin Dr. Galina Khitrova und Humboldt-Forschungspreisträger Professor Dr. Hyatt Gibbs, auf Einladung des Fachjournals "Nature Physics" einen Übersichtsartikel über die aktuellen Entwicklungen in der weltweiten Forschung verfasst. Unter dem Titel "Vacuum Rabi splitting in semiconductors" (Vakuum-Rabi-Aufspaltung in Halbleitern) erschien er in dessen Februar-Ausgabe (Khitrova, Gibbs, Kira, Koch & Scherer, Nature Physics, Vol. 2, No. 2, Seiten 81 - 90 (2006)).

"Der Schlüsselbegriff für unsere Arbeit ist die ’starke Licht-Materie-Kopplung’", erklärt Juniorprofessor Kira. Dieses Phänomen, das sich besonders gut in Halbleiter-Nanostrukturen (so genannten Quantenpunkten) beobachten lässt, führt zu Effekten wie der Verschränkung von Lichtteilchen (dabei sind die Eigenschaften von Teilchen, auch wenn sich diese an ganz verschiedenen Orten aufhalten, untrennbar miteinander verbunden) oder der Superposition (dabei befindet sich, kaum vorstellbar, ein Teilchen zur selben Zeit in mehreren, unterschiedlichen Zuständen) und erlaubt auch, dass einzelne Lichtteilchen (statt eines ganzen Lichtstrahls) kontrolliert freigesetzt werden können. Effekte wie diese sind grundlegend für die Entwicklung von auf Quantenbasis arbeitenden Computern.

Die materielle Basis für entsprechende Experimente sind die Quantenpunkte: winzige Strukturen von bis zu 10.000 Atomen. Die darin befindlichen Elektronen tragen nur ganz bestimmte, "diskrete" Energiemengen. (Normalerweise nimmt ihre Energie kontinuierliche Werte an.) Quantenpunkte wiederum lassen sich in kaum größere optische Resonatoren einbetten. Solche Resonatoren bestehen aus periodischen Anordnungen zum Beispiel von Löchern in Halbleiterschichten, so genannten photonischen Kristallen, oder aus periodischen Anordnungen verschiedener Halbleitermaterialien, sogenannter Bragg-Reflektoren. Wichtig ist hierbei, dass die Periodizitätslänge gerade die Hälfte der Wellenlänge des verwendeten Lichtes ist. In solche Resonatoren lassen sich nun die Lichtteilchen "einsperren", die ähnlich wie die Elektronen nur über diskrete Energien verfügen. Die in diesem System beobachtbare Wechselwirkung zwischen Elektronen und Lichtteilchen ist es schließlich, die die Physiker untersuchen.

Systeme aus Quantenpunkten und Resonatoren in Halbleiterstrukturen könnten nun den Weg weisen, um eines der bislang größten Probleme auf dem Weg zur Herstellung zu Quantencomputern zu überwinden, nämlich die Dekohärenz. Dieser Begriff beschreibt das Phänomen, dass der definierte Zustand von Lichtteilchen und Elektronen durch deren Kontakt mit der Umgebung gestört wird, also nicht mehr kontrolliert werden kann.

"In der Arbeitsgruppe Theoretische Halbleiterphysik", erklärt Koch, "arbeiten wir seit Jahren daran, bisherige Verfahren zur Herstellung und Untersuchung solcher Systeme zu verbessern, unter anderem, indem wir die Halbleiterstrukturen optimieren." In dem aktuellen Übersichtsartikel in Nature Physics diskutieren er und seine Kollegen nun die bisherigen Fortschritte auf dem Weg zur starken Licht-Materie-Kopplung in Halbleitermaterialien und die experimentelle Beobachtung der Vakuum-Rabi-Aufspaltung und schlagen verschiedene Testverfahren vor, mittels derer die quantenoptische Licht-Materie-Kopplung experimentell überprüft werden kann. Schließlich geben die Physiker aus Marburg und den USA auch einen Ausblick auf die möglichen Anwendungen im Rahmen der Quanteninformationstechnologie und der Herstellung von Quantencomputern.

Kontakt
Professor Dr. Stephan W. Koch
Philipps-Universität Marburg
Fachbereich Physik / Wissenschaftliches Zentrum für Materialwissenschaften
Renthof 5
35032 Marburg
Tel.: (06421) 28 21336
E-Mail: s.w.koch@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Lichtteilchen Physik Quantencomputern Quantenpunkt Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics