Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Halbleiter-Quantenoptik

03.02.2006


Physiker der Philipps-Universität Marburg präsentieren Überblicksartikel in Nature Physics



Quantenoptische Effekte in atomaren Systemen wurden in den letzten Jahren mit einer Reihe von Nobelpreisen gewürdigt. Beispiele sind die Bose-Einstein-Kondensation, optische Kühlung von Atomen, optische Fallen und einiges mehr. Für viele praktische und technologische Anwendungen solcher quantenoptischer Effekte, zum Beispiel auch für die technische Realisierung von Quantencomputern, ist es wünschenswert, die quantenoptischen Effekte in Festkörpern, speziell in Halbleitern realisieren zu können. Hier gelang im Jahr 2004 erstmals die so genannte "Vakuum-Rabi-Aufspaltung" in Systemen von Halbleiter-Quantenpunkten.



"Die Realisierung dieses Effekts", so der Marburger Physiker Professor Dr. Stephan W. Koch, "ist ein Ausdruck der starken Kopplung zwischen einzelnen Lichtteilchen und dem Halbleiter. Er ist eine der Voraussetzungen für genaue Untersuchungen, wie sich Lichtteilchen in jenen Halbleiterstrukturen verhalten, die als Basis künftiger Quantencomputer dienen können." Diese Forschungsarbeit ist sehr zukunftsträchtig: Theoretische Konzepte sagen voraus, dass die Leistungsfähigkeit von Quantencomputern diejenige herkömmlicher Rechnersysteme um mehrere Größenordnungen übertreffen wird.

Nun haben Stephan W. Koch und Mackillo Kira, Professoren für Theoretische Halbleiterphysik an der Philipps-Universität Marburg, gemeinsam mit ihren experimentell arbeitenden Kollaborationspartnern an der US-amerikanischen University of Arizona in Tucson, Professorin Dr. Galina Khitrova und Humboldt-Forschungspreisträger Professor Dr. Hyatt Gibbs, auf Einladung des Fachjournals "Nature Physics" einen Übersichtsartikel über die aktuellen Entwicklungen in der weltweiten Forschung verfasst. Unter dem Titel "Vacuum Rabi splitting in semiconductors" (Vakuum-Rabi-Aufspaltung in Halbleitern) erschien er in dessen Februar-Ausgabe (Khitrova, Gibbs, Kira, Koch & Scherer, Nature Physics, Vol. 2, No. 2, Seiten 81 - 90 (2006)).

"Der Schlüsselbegriff für unsere Arbeit ist die ’starke Licht-Materie-Kopplung’", erklärt Juniorprofessor Kira. Dieses Phänomen, das sich besonders gut in Halbleiter-Nanostrukturen (so genannten Quantenpunkten) beobachten lässt, führt zu Effekten wie der Verschränkung von Lichtteilchen (dabei sind die Eigenschaften von Teilchen, auch wenn sich diese an ganz verschiedenen Orten aufhalten, untrennbar miteinander verbunden) oder der Superposition (dabei befindet sich, kaum vorstellbar, ein Teilchen zur selben Zeit in mehreren, unterschiedlichen Zuständen) und erlaubt auch, dass einzelne Lichtteilchen (statt eines ganzen Lichtstrahls) kontrolliert freigesetzt werden können. Effekte wie diese sind grundlegend für die Entwicklung von auf Quantenbasis arbeitenden Computern.

Die materielle Basis für entsprechende Experimente sind die Quantenpunkte: winzige Strukturen von bis zu 10.000 Atomen. Die darin befindlichen Elektronen tragen nur ganz bestimmte, "diskrete" Energiemengen. (Normalerweise nimmt ihre Energie kontinuierliche Werte an.) Quantenpunkte wiederum lassen sich in kaum größere optische Resonatoren einbetten. Solche Resonatoren bestehen aus periodischen Anordnungen zum Beispiel von Löchern in Halbleiterschichten, so genannten photonischen Kristallen, oder aus periodischen Anordnungen verschiedener Halbleitermaterialien, sogenannter Bragg-Reflektoren. Wichtig ist hierbei, dass die Periodizitätslänge gerade die Hälfte der Wellenlänge des verwendeten Lichtes ist. In solche Resonatoren lassen sich nun die Lichtteilchen "einsperren", die ähnlich wie die Elektronen nur über diskrete Energien verfügen. Die in diesem System beobachtbare Wechselwirkung zwischen Elektronen und Lichtteilchen ist es schließlich, die die Physiker untersuchen.

Systeme aus Quantenpunkten und Resonatoren in Halbleiterstrukturen könnten nun den Weg weisen, um eines der bislang größten Probleme auf dem Weg zur Herstellung zu Quantencomputern zu überwinden, nämlich die Dekohärenz. Dieser Begriff beschreibt das Phänomen, dass der definierte Zustand von Lichtteilchen und Elektronen durch deren Kontakt mit der Umgebung gestört wird, also nicht mehr kontrolliert werden kann.

"In der Arbeitsgruppe Theoretische Halbleiterphysik", erklärt Koch, "arbeiten wir seit Jahren daran, bisherige Verfahren zur Herstellung und Untersuchung solcher Systeme zu verbessern, unter anderem, indem wir die Halbleiterstrukturen optimieren." In dem aktuellen Übersichtsartikel in Nature Physics diskutieren er und seine Kollegen nun die bisherigen Fortschritte auf dem Weg zur starken Licht-Materie-Kopplung in Halbleitermaterialien und die experimentelle Beobachtung der Vakuum-Rabi-Aufspaltung und schlagen verschiedene Testverfahren vor, mittels derer die quantenoptische Licht-Materie-Kopplung experimentell überprüft werden kann. Schließlich geben die Physiker aus Marburg und den USA auch einen Ausblick auf die möglichen Anwendungen im Rahmen der Quanteninformationstechnologie und der Herstellung von Quantencomputern.

Kontakt
Professor Dr. Stephan W. Koch
Philipps-Universität Marburg
Fachbereich Physik / Wissenschaftliches Zentrum für Materialwissenschaften
Renthof 5
35032 Marburg
Tel.: (06421) 28 21336
E-Mail: s.w.koch@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Lichtteilchen Physik Quantencomputern Quantenpunkt Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie