Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


How to find the orbital needle in the celestial haystack


On 2 February experts from across the world meet at ESA to discuss how to best calculate spacecraft orbits. Even though the space age is now 49 years old, determining the optimal trajectories for spacecraft is a far from easy task.

People often have trouble deciding which is the best route to take on a car journey. In space the problems are much worse. Space missions are constrained by certain factors such as the thrust of the rocket used to launch the spacecraft, the celestial object you want to reach and the time at which you want to get there. When working out the best trajectories within such constraints, engineers all have different strategies.

... mehr zu:

“Ask ten engineers for the best orbit for a particular spacecraft and you’ll get ten different ideas,” says Dr. Dario Izzo, a researcher on mission analysis in the Advanced Concepts Team at ESA’s European Space and Technology Research Centre (ESTEC) in the Netherlands. Each one of these missions will be the best for a certain reason, so the question becomes: what’s the best of the best? One of the proposed trajectories or another that no-one has thought of?

In other words, orbits are like needles in a haystack. Search hard enough and you’ll find one, but is it the best one in the haystack? That’s where the new technique of global optimisation comes in. It is a method of handling complex problems with many variables that has lots of solutions. But there are many techniques for global optimisation and they are difficult to compare since they seldom use the same constraints when applied.

To compare and contrast different techniques, ESA’s Advanced Concepts Team, supported by ESOC, launched a competition. They issued a challenge to space engineers across the world to find an intercept trajectory that delivered as much energy as possible to the asteroid 2001 TW229.

Twelve teams, from the US, China, Russia and Europe submitted their respective best solution. Izzo’s job was to rank the proposals according to how much energy each mission could impart to the asteroid. “The inspiration for this competition was asteroid deflection, a problem we have been working on quite thoroughly” says Izzo. Whilst asteroid 2001 TW229 presents no danger to Earth, issuing a call for trajectories simulated a step that would be taken in the event that a potentially dangerous asteroid were to be discovered. The key to the mission would be to deliver the largest push possible, in time for it to do the most good.

The top ranked trajectory went to a team from the United States’ Jet Propulsion Laboratory (closely followed by two Spanish teams). Their amazing trajectory involved seven planetary flybys, mostly of the Earth but including Venus, Jupiter and Saturn that literally smashed the spacecraft into a head-on collision with the asteroid.

The teams will now meet in the Netherlands to discuss their individual approaches to the problem. “The response to the competition was excellent. At the meeting we will discuss the different methods used and identify the ones that have proven the most promising,” says Izzo.

In fact, the response to the competition was so good that the Advanced Concepts Team also hope to run future competitions, to further stimulate research in the exciting field of mission analysis.

Dario Izzo | alfa
Weitere Informationen:

Weitere Berichte zu: Earth

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>



Industrie & Wirtschaft

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
im innovations-report
in Kooperation mit academics