Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erzeugung ultrakalter Neutronen am Forschungsreaktor in Mainz gelungen

01.02.2006


Nach einjährigen Vorarbeiten wurden erstmals an einem gepulsten Reaktor ultrakalte Neutronen erzeugt - Mainz nimmt weltweit Vorreiterposition ein



Am Forschungsreaktor der Johannes Gutenberg-Universität Mainz ist erstmals die Erzeugung ultrakalter Neutronen gelungen. Das Experiment hat weltweit Beachtung gefunden, und die beteiligten Wissenschaftler aus Mainz und München haben nun beim Wettlauf um die Produktion einer größeren Menge ultrakalter Neutronen die Nase vorn. Es ist das erste Mal, dass an einem gepulsten Reaktor ultrakalte Neutronen erzeugt wurden. Dieser Erfolg schafft die Voraussetzungen dafür, die Teilchen eingehend untersuchen zu können und damit Erkenntnisse über den Ursprung von Materie und Antimaterie zu gewinnen. "Wir haben ein Jahr lang gebraucht, jetzt hat es geklappt", sagt Univ.-Prof. Dr. Jens Volker Kratz vom Institut für Kernchemie zu dem erfolgreichen Experiment, bei dem am 11. Januar 2006 erstmals ultrakalte Neutronen erzeugt wurden. "Damit nehmen wir eine Vorreiterposition ein und haben plötzlich ganz neue Forschungsperspektiven", kommentiert Univ.-Prof. Dr. Werner Heil vom Institut für Physik das Ereignis, das in internationalen Fachkreisen bereits für Aufsehen gesorgt hat. Die Arbeiten der Mainzer Wissenschaftler zur Herstellung ultrakalter Neutronen erfolgen in enger Zusammenarbeit mit dem Physik Department E18 der TU München.

... mehr zu:
»Forschungsreaktor »Neutron »Reaktor »TRIGA


Neutronen sind Elementarteilchen, die normalerweise im Atomkern gebunden sind. Sie sind nach außen neutral, weisen aber im Inneren möglicherweise eine asymmetrisch verteilte Ladung auf, was zu einem elektrischen Dipol führen würde. Für die Forschung werden freie Neutronen vor allem in Kernreaktoren erzeugt, so auch im Mainzer TRIGA Reaktor. Zur Herstellung von ultrakalten Neutronen werden die im Reaktor produzierten Neutronen mit Hilfe von festem Deuterium, welches mit flüssigem Helium auf eine Temperatur von minus 265 Grad Celsius heruntergekühlt worden ist, in ihrer Geschwindigkeit so weit gebremst, dass sie gespeichert und beobachtet werden können. "Das Problem ist die Kühlung, weil ein Reaktor im Betrieb Wärme erzeugt", erläutert Heil. "Am TRIGA haben wir den Vorteil, dass der Wärmeeintrag nicht so groß ist."

Der TRIGA ist ein Forschungsreaktor, der vor rund 40 Jahren an der Universität Mainz in Betrieb gegangen ist. Er ist eine reine Neutronenquelle und nicht für die Stromerzeugung geeignet, weil er im Dauerbetrieb nur eine geringe Leistung erbringt. Allerdings kann der Reaktor gepulst werden und liefert dann im sogenannten Pulsbetrieb kurzzeitig eine sehr hohe Leistung von 250.000 Kilowatt, die für die verschiedenen Forschungsvorhaben am Institut benötig wird. Bei TRIGA-Reaktoren bestehen die Brennelemente aus Zirkonium, Uran und Wasserstoff in Form einer Legierung, wobei der Wasserstoff als Moderator die schnellen Neutronen herunterbremst. Im Pulsbetrieb steigt die Temperatur über 300 Grad Celsius und der Moderator kann die Neutronen nicht mehr auf thermische Energie bremsen, so dass der Reaktor sich automatisch abschaltet. "Wir produzieren am TRIGA Mainz in Millisekunden einen hohen Neutronenfluss, ohne dass große Wärme entsteht", erläutert Kratz den Vorteil des Kernreaktors. Die entstandenen thermischen Neutronen mit einer Geschwindigkeit von 2.200 Meter/Sekunde werden in dem Konverter aus festem Deuterium weiter heruntergebremst auf eine Geschwindigkeit von 5 Meter/Sekunde bei Temperaturen nahe dem absoluten Nullpunkt.

Zwar haben auch andere Forschungseinrichtungen im Ausland schon ultrakalte Neutronen erzeugt, allerdings nur in kleinen Mengen - ein Problem, an dem nunmehr seit zehn Jahren geforscht wird. Das Institut Laue-Langevin (ILL) in Grenoble kommt mit seinem konventionellen Reaktor im Dauerbetrieb auf eine Ausbeute von 30 ultrakalten Neutronen pro Kubikzentimeter. Das Mainzer Experiment sollte bis zu 1.000 ultrakalte Neutronen pro Kubikzentimeter liefern. "Das bietet uns ganz andere Perspektiven für weitere Forschungen", so Heil. Weltweit wird noch am Paul Scherrer Institut in der Schweiz, in Los Alamos und an einem japanischen Institut an der Herstellung ultrakalter Neutronen gearbeitet, wobei in Los Alamos mit einer anderen Technik auch schon gute Ergebnisse erzielt worden sind. "Wir sind sehr optimistisch, dass eine Erhöhung der Ausbeute um das Zehnfache gegenüber dem erstmal am TRIGA Mainz erzielten Wert von 40.000 Ereignissen pro Puls möglich ist", sagt Dr. Norbert Trautmann vom Institut für Kernchemie.

Nach der erfolgreichen Herstellung sollen die ultrakalten Neutronen als Nächstes in Gefäßen abgespeichert werden, so dass sie für längere Beobachtungen zur Verfügung stehen. Wissenschaftler der TU München wollen vor allem versuchen, die Lebensdauer der Neutronen - ihre Halbwertszeit beträgt in etwa 10 Minuten - so genau wie möglich zu ermitteln. Das Mainzer Team ist hauptsächlich an den Eigenschaften der Neutronen in einem elektrischen Feld, dem sogenannten elektrischen Dipolmoment, interessiert. Damit könnte es möglich sein, einmal Aussagen über den Ursprung von Materie und Antimaterie zu machen. Gerade diese Messungen waren bislang wegen der zu kleinen Mengen ultrakalter Neutronen limitiert. "Wir beobachten im Universum nur Materie, Antimaterie ist fast nicht vorhanden. Warum dies so ist, dazu könnte das Verständnis des elektrischen Dipolmoments des Neutrons ganz wichtige Informationen liefern", erläutert Heil.

Kontakt und Informationen:
Johannes Gutenberg-Universität Mainz
Institut für Physik
Univ.-Prof. Dr. Werner Heil
Tel. 06131 39-22885
Fax 06131 39-25179
E-Mail: wheil@uni-mainz.de
Institut für Kernchemie
Univ.-Prof. Dr. Jens Volker Kratz
Tel. 06131 39-25704
Fax 06131 39-24510
E-Mail: jvkratz@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://zope.verwaltung.uni-mainz.de/presse/bilder/ucn
http://www.uni-mainz.de

Weitere Berichte zu: Forschungsreaktor Neutron Reaktor TRIGA

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften