Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch in Laser-Plasma-Physik: Energieverteilung bei Teilchenbeschleuniger stark reduziert

01.02.2006


Geladene Teilchen, etwa Ionen und Elektronen, werden in einem Teilchenbeschleuniger mittels elektrischer Felder auf hohe Geschwindigkeit gebracht. Diese Geräte werden in verschiedenen Bereichen der Grundlagenforschung, etwa in der Materialwissenschaft, genutzt. Daneben kommt Teilchenbeschleunigern aber auch in der Medizin, vornehmlich in der Strahlenmedizin, steigende Bedeutung in Diagnostik und Therapie zu. Ein neuer Ansatz kommt aus der Laser-Plasma-Physik. Dabei werden hochintensive Laserimpulse eingesetzt, um Elektronen zu beschleunigen, was wiederum Ionen in hohe Geschwindigkeit versetzt. Diese Geräte sind herkömmlichen Teilchenbeschleunigern in einigen Punkten überlegen. Limitierend war nur, dass Ionen mit breitest möglicher Energieverteilung - von 0 bis zur Maximalenergie - erzeugt wurden. Einem Team aus deutschen und amerikanischen Forschern, zu dem auch Jörg Schreiber, Doktorand am Institut für Kernphysik von Professor Dr. Dieter Habs an der Ludwig-Maximilians-Universität (LMU) München und dem Max-Planck-Institut für Quantenoptik in Garching gehört, gelang jetzt ein Durchbruch. Die Wissenschaftler konnten, wie in der aktuellen Ausgabe von "Nature" berichtet, Ionen mit stark reduzierter Energieverteilung erzeugen.



Bei ihren Experimenten fokussieren die Forscher die leistungsstärksten und intensivsten Laserimpulse, die derzeit erzeugt werden können, auf dünne Folien. Elektronen werden durch den Lichtdruck nach vorne gedrückt und treten auf der Rückseite wieder aus, wo hohe elektrostatische Felder entstehen. In diesen Feldern werden Ionen beschleunigt, die auf der Rückseite der Folie sitzen. Die Ionen werden also nicht direkt durch den Laserstrahl beschleunigt, sondern durch die Elektronen, die durch die Laserenergie in einen Plasmazustand versetzt werden. Mit Hilfe eines speziellen Gerätes können dann die verschiedenen Ionen aufgetrennt und die jeweils zugehörige Energieverteilung bestimmt werden. Am Ende landen die Ionen, je nach Ladung, Masse und Energie, in verschiedenen Bereichen so genannter CR39-Platten. Werden diese Plastikplatten anschließend mit Natronlauge (NaOH) behandelt, werden die Aufschlagpunkte der Ionen als winzige Krater sichtbar und können gezählt werden. Das erfolgt mit Hilfe eines automatischen Mikroskops, das jedes einzelne beobachtete Ion verfolgen kann und so eine genaue Analyse der Energieverteilungen zwischen den unterschiedlichen Ionensorten ermöglicht.



Schreibers Beitrag lag vor allem darin, einen wesentlichen Teil dieser Datenauswertung vorzunehmen, was zu der Zeit von den amerikanischen Kollegen nicht geleistet werden konnte. Dafür nötig war ein automatisiertes Scanningmikroskop mit einer hochentwickelten Mustererkennungssoftware. Diese erlaubt, innerhalb von zwölf Stunden etwa eine Million Ionenspuren auf den CR39-Platten zu vermessen und die Daten zu katalogisieren. Per Hand würde bei 30 Sekunden pro Spur für die Datenaufnahme und Speicherung die Arbeit etwa ein Jahr ohne Pause in Anspruch nehmen - für eine einzige Detektorplatte. Während eines typischen Experiments, das etwa drei Wochen dauert, werden rund 100 Platten belichtet. Dr. Manuel Hegelich, beschäftigt am Los Alamos National Laboratory und Erstautor der Studie, war bis Ende 2003 als Doktorand und später auch als Postdoktorand am Institut für Kernphysik der LMU bei Professor Dr. Dieter Habs tätig. Über ihn konnte die Kooperation zwischen den deutschen und amerikanischen Forschern vermittelt werden. Mittlerweile befindet sich in Los Alamos ein identisches automatisches Analysesystem. Wegen der Datenfülle, die bei Experimenten anfällt, sollen aber auch in Zukunft beide Systeme zur Auswertung der gemeinsamen Versuche genutzt werden.

In vorangegangenen Experimenten wurde bereits gezeigt, dass Laser-Plasma-Geräte dichtere Ionenpulse als konventionelle Teilchenbeschleuniger erzeugen können. Problematisch war nur die maximal weite Energieverteilung, die einen breiten Einsatz der Geräte unmöglich machte. Dank der nun gezeigten stark reduzierten Energieverteilung könnte sich das ändern. "In unseren nächsten Experimenten werden wir uns ganz grundsätzlich mit der weiteren Erforschung der lasererzeugten Ionenstrahlen beschäftigen", berichtet Schreiber. "Bisher haben wir ja nur demonstriert, dass diese Art der Ionen mit einem Laser erzeugt werden kann. Dies gilt es nun zu optimieren und besser zu verstehen. Denn die Bedeutung dieser Ionen liegt ja darin, dass nur durch sie bestimmte Anwendungen in greifbare Nähe rücken. Das betrifft zum einen die Grundlagenforschung. Eines unserer großen Ziele ist aber auch, eine bereits entwickelte und an sich marktreife Ionen-Krebstherapie mit Hilfe der lasergenerierten Ionenstrahlen zu verwirklichen. Davon sind wir zwar noch weit entfernt, aber die nächste Generation der so genannten Petawatt-Laser sollte in der Lage sein, in den relevanten Ionen-Energie-Bereich vorzustoßen." (suwe)

Publikation:
"Laser acceleration of quasi-monoenergetic MeV ion beams", Hegelich B.M., Albright B.J., Cobble J., Flippo K., Letzring S., Paffett M., Ruhl H., Schreiber J., Schulze R.K., Fernandez J.C., Nature, Bd. 439, S. 441-444, 2006

Ansprechpartner:
Jörg Schreiber
Institut für Kernphysik (Prof. Dr. Dieter Habs) der LMU in München und
Max-Planck-Institut für Quantenoptik in Garching
Tel.: 089-32905-124
E-Mail: joerg.schreiber@mpq.mpg.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie