Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch in Laser-Plasma-Physik: Energieverteilung bei Teilchenbeschleuniger stark reduziert

01.02.2006


Geladene Teilchen, etwa Ionen und Elektronen, werden in einem Teilchenbeschleuniger mittels elektrischer Felder auf hohe Geschwindigkeit gebracht. Diese Geräte werden in verschiedenen Bereichen der Grundlagenforschung, etwa in der Materialwissenschaft, genutzt. Daneben kommt Teilchenbeschleunigern aber auch in der Medizin, vornehmlich in der Strahlenmedizin, steigende Bedeutung in Diagnostik und Therapie zu. Ein neuer Ansatz kommt aus der Laser-Plasma-Physik. Dabei werden hochintensive Laserimpulse eingesetzt, um Elektronen zu beschleunigen, was wiederum Ionen in hohe Geschwindigkeit versetzt. Diese Geräte sind herkömmlichen Teilchenbeschleunigern in einigen Punkten überlegen. Limitierend war nur, dass Ionen mit breitest möglicher Energieverteilung - von 0 bis zur Maximalenergie - erzeugt wurden. Einem Team aus deutschen und amerikanischen Forschern, zu dem auch Jörg Schreiber, Doktorand am Institut für Kernphysik von Professor Dr. Dieter Habs an der Ludwig-Maximilians-Universität (LMU) München und dem Max-Planck-Institut für Quantenoptik in Garching gehört, gelang jetzt ein Durchbruch. Die Wissenschaftler konnten, wie in der aktuellen Ausgabe von "Nature" berichtet, Ionen mit stark reduzierter Energieverteilung erzeugen.



Bei ihren Experimenten fokussieren die Forscher die leistungsstärksten und intensivsten Laserimpulse, die derzeit erzeugt werden können, auf dünne Folien. Elektronen werden durch den Lichtdruck nach vorne gedrückt und treten auf der Rückseite wieder aus, wo hohe elektrostatische Felder entstehen. In diesen Feldern werden Ionen beschleunigt, die auf der Rückseite der Folie sitzen. Die Ionen werden also nicht direkt durch den Laserstrahl beschleunigt, sondern durch die Elektronen, die durch die Laserenergie in einen Plasmazustand versetzt werden. Mit Hilfe eines speziellen Gerätes können dann die verschiedenen Ionen aufgetrennt und die jeweils zugehörige Energieverteilung bestimmt werden. Am Ende landen die Ionen, je nach Ladung, Masse und Energie, in verschiedenen Bereichen so genannter CR39-Platten. Werden diese Plastikplatten anschließend mit Natronlauge (NaOH) behandelt, werden die Aufschlagpunkte der Ionen als winzige Krater sichtbar und können gezählt werden. Das erfolgt mit Hilfe eines automatischen Mikroskops, das jedes einzelne beobachtete Ion verfolgen kann und so eine genaue Analyse der Energieverteilungen zwischen den unterschiedlichen Ionensorten ermöglicht.



Schreibers Beitrag lag vor allem darin, einen wesentlichen Teil dieser Datenauswertung vorzunehmen, was zu der Zeit von den amerikanischen Kollegen nicht geleistet werden konnte. Dafür nötig war ein automatisiertes Scanningmikroskop mit einer hochentwickelten Mustererkennungssoftware. Diese erlaubt, innerhalb von zwölf Stunden etwa eine Million Ionenspuren auf den CR39-Platten zu vermessen und die Daten zu katalogisieren. Per Hand würde bei 30 Sekunden pro Spur für die Datenaufnahme und Speicherung die Arbeit etwa ein Jahr ohne Pause in Anspruch nehmen - für eine einzige Detektorplatte. Während eines typischen Experiments, das etwa drei Wochen dauert, werden rund 100 Platten belichtet. Dr. Manuel Hegelich, beschäftigt am Los Alamos National Laboratory und Erstautor der Studie, war bis Ende 2003 als Doktorand und später auch als Postdoktorand am Institut für Kernphysik der LMU bei Professor Dr. Dieter Habs tätig. Über ihn konnte die Kooperation zwischen den deutschen und amerikanischen Forschern vermittelt werden. Mittlerweile befindet sich in Los Alamos ein identisches automatisches Analysesystem. Wegen der Datenfülle, die bei Experimenten anfällt, sollen aber auch in Zukunft beide Systeme zur Auswertung der gemeinsamen Versuche genutzt werden.

In vorangegangenen Experimenten wurde bereits gezeigt, dass Laser-Plasma-Geräte dichtere Ionenpulse als konventionelle Teilchenbeschleuniger erzeugen können. Problematisch war nur die maximal weite Energieverteilung, die einen breiten Einsatz der Geräte unmöglich machte. Dank der nun gezeigten stark reduzierten Energieverteilung könnte sich das ändern. "In unseren nächsten Experimenten werden wir uns ganz grundsätzlich mit der weiteren Erforschung der lasererzeugten Ionenstrahlen beschäftigen", berichtet Schreiber. "Bisher haben wir ja nur demonstriert, dass diese Art der Ionen mit einem Laser erzeugt werden kann. Dies gilt es nun zu optimieren und besser zu verstehen. Denn die Bedeutung dieser Ionen liegt ja darin, dass nur durch sie bestimmte Anwendungen in greifbare Nähe rücken. Das betrifft zum einen die Grundlagenforschung. Eines unserer großen Ziele ist aber auch, eine bereits entwickelte und an sich marktreife Ionen-Krebstherapie mit Hilfe der lasergenerierten Ionenstrahlen zu verwirklichen. Davon sind wir zwar noch weit entfernt, aber die nächste Generation der so genannten Petawatt-Laser sollte in der Lage sein, in den relevanten Ionen-Energie-Bereich vorzustoßen." (suwe)

Publikation:
"Laser acceleration of quasi-monoenergetic MeV ion beams", Hegelich B.M., Albright B.J., Cobble J., Flippo K., Letzring S., Paffett M., Ruhl H., Schreiber J., Schulze R.K., Fernandez J.C., Nature, Bd. 439, S. 441-444, 2006

Ansprechpartner:
Jörg Schreiber
Institut für Kernphysik (Prof. Dr. Dieter Habs) der LMU in München und
Max-Planck-Institut für Quantenoptik in Garching
Tel.: 089-32905-124
E-Mail: joerg.schreiber@mpq.mpg.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung