Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch in Laser-Plasma-Physik: Energieverteilung bei Teilchenbeschleuniger stark reduziert

01.02.2006


Geladene Teilchen, etwa Ionen und Elektronen, werden in einem Teilchenbeschleuniger mittels elektrischer Felder auf hohe Geschwindigkeit gebracht. Diese Geräte werden in verschiedenen Bereichen der Grundlagenforschung, etwa in der Materialwissenschaft, genutzt. Daneben kommt Teilchenbeschleunigern aber auch in der Medizin, vornehmlich in der Strahlenmedizin, steigende Bedeutung in Diagnostik und Therapie zu. Ein neuer Ansatz kommt aus der Laser-Plasma-Physik. Dabei werden hochintensive Laserimpulse eingesetzt, um Elektronen zu beschleunigen, was wiederum Ionen in hohe Geschwindigkeit versetzt. Diese Geräte sind herkömmlichen Teilchenbeschleunigern in einigen Punkten überlegen. Limitierend war nur, dass Ionen mit breitest möglicher Energieverteilung - von 0 bis zur Maximalenergie - erzeugt wurden. Einem Team aus deutschen und amerikanischen Forschern, zu dem auch Jörg Schreiber, Doktorand am Institut für Kernphysik von Professor Dr. Dieter Habs an der Ludwig-Maximilians-Universität (LMU) München und dem Max-Planck-Institut für Quantenoptik in Garching gehört, gelang jetzt ein Durchbruch. Die Wissenschaftler konnten, wie in der aktuellen Ausgabe von "Nature" berichtet, Ionen mit stark reduzierter Energieverteilung erzeugen.



Bei ihren Experimenten fokussieren die Forscher die leistungsstärksten und intensivsten Laserimpulse, die derzeit erzeugt werden können, auf dünne Folien. Elektronen werden durch den Lichtdruck nach vorne gedrückt und treten auf der Rückseite wieder aus, wo hohe elektrostatische Felder entstehen. In diesen Feldern werden Ionen beschleunigt, die auf der Rückseite der Folie sitzen. Die Ionen werden also nicht direkt durch den Laserstrahl beschleunigt, sondern durch die Elektronen, die durch die Laserenergie in einen Plasmazustand versetzt werden. Mit Hilfe eines speziellen Gerätes können dann die verschiedenen Ionen aufgetrennt und die jeweils zugehörige Energieverteilung bestimmt werden. Am Ende landen die Ionen, je nach Ladung, Masse und Energie, in verschiedenen Bereichen so genannter CR39-Platten. Werden diese Plastikplatten anschließend mit Natronlauge (NaOH) behandelt, werden die Aufschlagpunkte der Ionen als winzige Krater sichtbar und können gezählt werden. Das erfolgt mit Hilfe eines automatischen Mikroskops, das jedes einzelne beobachtete Ion verfolgen kann und so eine genaue Analyse der Energieverteilungen zwischen den unterschiedlichen Ionensorten ermöglicht.



Schreibers Beitrag lag vor allem darin, einen wesentlichen Teil dieser Datenauswertung vorzunehmen, was zu der Zeit von den amerikanischen Kollegen nicht geleistet werden konnte. Dafür nötig war ein automatisiertes Scanningmikroskop mit einer hochentwickelten Mustererkennungssoftware. Diese erlaubt, innerhalb von zwölf Stunden etwa eine Million Ionenspuren auf den CR39-Platten zu vermessen und die Daten zu katalogisieren. Per Hand würde bei 30 Sekunden pro Spur für die Datenaufnahme und Speicherung die Arbeit etwa ein Jahr ohne Pause in Anspruch nehmen - für eine einzige Detektorplatte. Während eines typischen Experiments, das etwa drei Wochen dauert, werden rund 100 Platten belichtet. Dr. Manuel Hegelich, beschäftigt am Los Alamos National Laboratory und Erstautor der Studie, war bis Ende 2003 als Doktorand und später auch als Postdoktorand am Institut für Kernphysik der LMU bei Professor Dr. Dieter Habs tätig. Über ihn konnte die Kooperation zwischen den deutschen und amerikanischen Forschern vermittelt werden. Mittlerweile befindet sich in Los Alamos ein identisches automatisches Analysesystem. Wegen der Datenfülle, die bei Experimenten anfällt, sollen aber auch in Zukunft beide Systeme zur Auswertung der gemeinsamen Versuche genutzt werden.

In vorangegangenen Experimenten wurde bereits gezeigt, dass Laser-Plasma-Geräte dichtere Ionenpulse als konventionelle Teilchenbeschleuniger erzeugen können. Problematisch war nur die maximal weite Energieverteilung, die einen breiten Einsatz der Geräte unmöglich machte. Dank der nun gezeigten stark reduzierten Energieverteilung könnte sich das ändern. "In unseren nächsten Experimenten werden wir uns ganz grundsätzlich mit der weiteren Erforschung der lasererzeugten Ionenstrahlen beschäftigen", berichtet Schreiber. "Bisher haben wir ja nur demonstriert, dass diese Art der Ionen mit einem Laser erzeugt werden kann. Dies gilt es nun zu optimieren und besser zu verstehen. Denn die Bedeutung dieser Ionen liegt ja darin, dass nur durch sie bestimmte Anwendungen in greifbare Nähe rücken. Das betrifft zum einen die Grundlagenforschung. Eines unserer großen Ziele ist aber auch, eine bereits entwickelte und an sich marktreife Ionen-Krebstherapie mit Hilfe der lasergenerierten Ionenstrahlen zu verwirklichen. Davon sind wir zwar noch weit entfernt, aber die nächste Generation der so genannten Petawatt-Laser sollte in der Lage sein, in den relevanten Ionen-Energie-Bereich vorzustoßen." (suwe)

Publikation:
"Laser acceleration of quasi-monoenergetic MeV ion beams", Hegelich B.M., Albright B.J., Cobble J., Flippo K., Letzring S., Paffett M., Ruhl H., Schreiber J., Schulze R.K., Fernandez J.C., Nature, Bd. 439, S. 441-444, 2006

Ansprechpartner:
Jörg Schreiber
Institut für Kernphysik (Prof. Dr. Dieter Habs) der LMU in München und
Max-Planck-Institut für Quantenoptik in Garching
Tel.: 089-32905-124
E-Mail: joerg.schreiber@mpq.mpg.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen