Radarsystem findet versteckte Eisablagerungen und Krater auf dem Mars

Einzigartige Erkenntnisse über Oberfläche des Planeten Mars
Radarsystem findet versteckte Eisablagerungen und Krater
SCIENCE berichtet über Experiment MARSIS der ESA-Mission MarsExpress

Bodenstrukturen in einer Tiefe von bis zu sieben Kilometern haben Forscher mit dem Radar-Experiment MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) während der Mission MarsExpress der Europäischen Weltraumorganisation ESA aufspüren können. So gelang es zum Beispiel, verschiedene Bodenschichtungen zu unterscheiden und Wassereis im Boden zu finden. Zur Forschergruppe, die von G. Picardi ("La Sapienza" University of Rome) geleitet wird, gehört die RUB-Arbeitsgruppe Antennen und Wellenausbreitung (Leitung: Prof. Dr. Peter Edenhofer, Fakultät für Elektrotechnik und Informationstechnik der RUB). Über ihre Erkenntnisse berichtet das Wissenschaftsmagazin SCIENCE.

Tiefliegende Strukturen mit Eis unter der Marsoberfläche

Auswertungen der ersten Messungen des Experiments MARSIS bestätigen, dass das Tiefensondierungsradar, welches die Marsoberfläche aus einer Höhe von ca. 250 bis 800 km vermisst, den Untergrund erstmals bis in eine Tiefe von ca. 7 km topographisch und morphologisch untersuchen kann. So tief gelegene Strukturen und Schichten waren bislang durch keine anderen Sensoren erkennbar. Ausgewählte Messreihen zunächst vom 26. Juni, 6. und 9. Juli 2005 zeigen zum Beispiel in der Umgebung des Nordpols von Mars geschichtete Ablagerungen von nahezu reinem Wassereis in einer Schichtdicke von ungefähr 1,8 km über einer stark reflektierenden Grenzfläche aus basaltartigem Regolith. Es stellt sich heraus, dass sich diese Schichtstruktur ca. 160 km entlang der Flugrichtung des Radars erstreckt. In einem anderen, 50 km seitlich versetzten Messbereich war die Struktur nicht mehr zu erkennen.

Versteckte Krater finden

Zum anderen entdeckten die Forscher in der auf mittleren nördlichen Breiten liegenden Mars-Tiefebene "Chryse Planitia" eine kreisförmige, nahezu gleichmäßig verteilte bassinartige Struktur mit einem Durchmesser von ca. 250 km. Sie nehmen an, dass die Vertiefung von einem Einschlag mit Kraterwänden herrührt und mit verlustarmen dielektrischem Material großen Volumens aufgefüllt ist, das für die Radarsignale nahezu transparent ist. Es stellt sich heraus, dass man diese kreisförmige Struktur nicht anhand der Daten erkennen kann, die von einem Mars Orbiter Laser Altimeter (MOLA) über der gleichen Tiefebene gemessen wurden: Bei optischen Frequenzen dringen Wellen kaum in den Boden ein. "Das zeigt, dass MARSIS tatsächlich in der Lage ist, auf der Marsoberfläche auch bislang versteckte oder begrabene Eisablagerungen und Einschlagkrater zu finden und als solche zu identifizieren", so Prof. Edenhofer. Zweifellos werde die Auswertung der MARSIS-Radarmessungen noch an zusätzlichem Wert gewinnen, wenn man sie mit den Messungen in Bezug bringt, die vom Kamera-Experiment bei MarsExpress verfügbar sind (High Resolution Stereo Camera/HRSC).

Messungen auf der Nachtseite

Zurzeit läuft bei MARSIS eine Messkampagne ("South Polar Project") vor allem auf der Nachtseite von Mars. Die Radarmessungen erfolgen über einen größeren Zeitraum hinweg und sollen Aufschluss über die als besonders interessant und vielversprechend eingeschätzte Südpolregion von Mars geben. "Es ist zu erwarten, dass hierbei MARSIS seiner Funktion als ein Schlüsselexperiment bei der Suche nach Wasser bzw. Eis auf dem Mars im Rahmen der Mission MarsExpress auch weiterhin in überzeugender Weise gerecht werden kann", so die Beurteilung von Prof. Edenhofer.

Technik des Radarsystems

Das für MARSIS entwickelte Radargerät ist ein Mehrfrequenz-Instrument vom Typ des Synthetic Aperture Radar (SAR) mit bordseitiger Datenvorverarbeitung. Es kann vor allem deshalb so große Eindringtiefen mit einem radialen räumlichen Auflösungsvermögen von etwa 150 m erzielen, weil es bei relativ niedrigen Frequenzen in vier Bändern zwischen 1,3 und 5,5 MHZ mit einer jeweiligen Bandbreite von 1 MHz (stepped frequency concept) betrieben wird. Das Auflösungsvermögen beträgt mit einer Pulswiederholfrequenz von 127 Hz und einer Mittelung über typischerweise 100 Pulse bei einer Spitzensendeleistung von 10 W ungefähr 5 bis 10 km. Das MARSIS Antennensystem besteht aus einem senkrecht zur Flugrichtung ausgerichteten Dipol mit Dipolarmen der Länge von jeweils 20 m und einem zur Marsoberfläche senkrecht positionierten Monopol der Länge 7 m (zwecks Reduktion von Bodenclutter und Separation von seitlich zeitgleich einfallenden Echosignalen). Von besonderer Problematik im Hinblick auf Frequenz- und Polarisationsabhängigkeit erwiesen sich bei dem MARSIS Antennensystem im Nahfeld relativ starke elektromagnetische Strahlungskopplungseffekte zum komplex strukturierten Zentralkörper der Raumsonde MarsExpress, zu den beiden Sonnensegeln und insbesondere zu der auf die Erde ausgerichteten Telemetrie-Parabolantenne. Diese Effekte führen u.a. zu einer Missweisung der elektrisch wirksamen Achse des Antennensystems und zu einer Verkopplung der aktuellen Radar-Signalechos über die Empfangskanäle jeweils von Dipol und Monopol, die nur teilweise korrigiert werden können (Kalibrationsproblem).

Förderung

Neben der Förderung durch die ESA auf europäischer Ebene wird die Raumfahrtmission MarsExpress national durch das Bundesministerium für Bildung und Forschung (BMBF) und das Deutsche Zentrum für Luft- und Raumfahrt (DLR) gefördert.

Titelaufnahme

G. Picardi et al.: Radar Soundings of the Subsurface of Mars. Science 310, no. 5756, pp. 1925-1928 (23 December 2005), DOI: 10.1126/science.1122165

Weitere Informationen

Prof. Dr.-Ing. Peter Edenhofer, Arbeitsgruppe Antennen und Wellenausbreitung, Institut für Hochfrequenztechnik, Fakultät für Elektrotechnik und Informationstechnik der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-22901/22977, Fax: 0234/32-14167, E-Mail: edh@hf.rub.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer