Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Mikrochip für Materiewellen

09.10.2001


Der Mikrochip kann mit einem in der Mikroelektronik üblichen lithographischen Verfahren hergestellt werden.


Der Mikrochip ist verkehrt herum in einer evakuierten Glaszelle montiert. Eine Silberschicht auf dem Chip reflektiert Laserstrahlen, die zum Einfangen der Rubidium-Atome aus dem Hintergrundgas benötigt werden.


Münchner Max-Planck-Forschern gelingt "Quantensprung" bei Miniaturisierung von Atomlasern / Mikrochip eröffnet neue Forschungsmöglichkeiten und Anwendungen

... mehr zu:
»Atomlaser »Materiewelle »Mikrochip

Vor nicht einmal zwei Jahren wurde über den Bau der ersten Atomlaser berichtet (vgl. PRI C 1/2000: "Wenn sich Materie als Welle zeigt"). Diese erzeugen Atomstrahlen, deren Eigenschaften denen eines Lasers in vielem gleichen. Jetzt ist es Physikern am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität in München gelungen, das Herzstück eines Atomlasers auf einem Mikrochip zu integrieren (Nature, 4. Oktober 2001). Damit wird die Erzeugung Laser-ähnlicher Materiewellen extrem vereinfacht, eine Leistung, die mit dem Übergang von einzelnen Transistor zur integrierten Mikroelektronik vergleichbar ist. Von Geräten mit Atomlasern erhofft man revolutionär neue Anwendungen, von der Hochpräzisionsmessung bis zum Quantencomputer.

Atome verhalten sich wie Wellen, die sich im Raum fortpflanzen und - ähnlich wie Lichtwellen - miteinander wechselwirken - das ist eine der wichtigsten Aussagen der Quantenmechanik. Wegen ihrer extremen Kleinheit und ihrer schnellen und unregelmäßigen Bewegung entziehen sich die Materiewellen jedoch dem Blick selbst der leistungsfähigsten Mikroskope. Das änderte sich vor einigen Jahren mit den ersten Experimenten zur "Bose-Einstein-Kondensation" drastisch: Mit Hilfe dieses lange vorausgesagten quantenmechanischen Effekts gelang es, Tausende von Atomen in den gleichen quantenmechanischen Zustand zu versetzen, und direkte Bilder dieser verstärkten atomaren Materiewelle aufzunehmen. Viele Wissenschaftler sind heute der Überzeugung, dass Bose-Einstein-Kondensate und Atomlaser zu revolutionär neuen Technologien führen werden - vergleichbar dem Laser, der so vielfältige Anwendungen wie Laser-Chirurgie, CD-Player oder Hochgeschwindigkeits-Telekommunikation erst ermöglicht hat. Wie die ersten Laser waren auch die ersten Atomlaser sehr komplizierte Apparaturen, die ganze Forschungslaboratorien ausfüllten. So verwendete man für den magnetischen Einschluss der Atome große, wassergekühlte Elektromagnete. Die Vakuumapparaturen mussten höchsten Ansprüchen genügen, um die Atome für lange Zeit von ihrer Umgebung zu isolieren und sie - für die Überführung in ein Bose-Einstein-Kondensat - fast bis auf den absoluten Nullpunkt abzukühlen.


Jetzt ist es Wolfgang Hänsel, Peter Hommelhoff, Theodor W. Hänsch und Jakob Reichel vom Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität München gelungen, die Herstellung von Bose-Einstein-Kondensaten bedeutend zu vereinfachen - auf einem briefmarkengroßen Mikrochip. Mikroskopische Leiterbahnen auf dem Chip ersetzen die großen Elektromagnete. Die ultrakalte Atomwolke des Kondensates schwebt nur Bruchteile eines Millimeters über diesen Leiterbahnen. Sie läßt sich auf diese Weise viel feiner kontrollieren - und nebenbei verringert die neue Methode erheblich den Stromverbrauch. Durch stärkeren magnetischen Einschluss reduziert sich die Zeit für die Erzeugung des Bose-Einstein-Kondensats von etwa einer Minute auf nur wenige Sekunden. Das wiederum reduziert die Anforderungen an das Vakuumsystem.

Die miniaturisierte Technik für Bose-Einstein-Kondensate hat noch einen weiteren, möglicherweise bedeutenderen Vorteil: Mit ihrer Hilfe können - wie in der Mikroelektronik - auf einem einzelnen Chip mehrere atom-optische Elemente integriert werden. Bereits in ihrem ersten Experiment ist es den Münchener Forschern gelungen, das empfindliche Bose-Einstein-Kondensat in einer Art "magnetischem Förderband" zu transportieren, das durch Wechselströme in zusätzlichen Leiterbahnen bewegt wird. Das verdeutlicht die Vielseitigkeit der neuen Technik und eröffnet neue Möglichkeiten, z.B. für ein integriertes Interferometer für Materiewellen - ein extrem sensibler Magnetsensor, für weitere Grundlagenexperimente zur Bose-Einstein-Kondensation oder für Anwendungen in der Quanteninformationsverarbeitung. Bereits jetzt ist abzusehen, dass viele Forschungslaboratorien die neue Chiptechnologie übernehmen werden, um Bose-Einstein-Kondensate in eigenen Anwendungen einzusetzen.

Weitere Informationen erhalten Sie von:

Dr. Jakob Reichel
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilian-Universität München
Tel.: 0 89 / 21 80 - 39 39 oder - 39 37
Fax: 0 89 / 28 51 92
E-Mail: jakob.reichel@physik.uni-muenchen.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri01/pri0159.pdf
http://www.mpq.mpg.de/
http://www.uni-muenchen.de/

Weitere Berichte zu: Atomlaser Materiewelle Mikrochip

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen