Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Mikrochip für Materiewellen

09.10.2001


Der Mikrochip kann mit einem in der Mikroelektronik üblichen lithographischen Verfahren hergestellt werden.


Der Mikrochip ist verkehrt herum in einer evakuierten Glaszelle montiert. Eine Silberschicht auf dem Chip reflektiert Laserstrahlen, die zum Einfangen der Rubidium-Atome aus dem Hintergrundgas benötigt werden.


Münchner Max-Planck-Forschern gelingt "Quantensprung" bei Miniaturisierung von Atomlasern / Mikrochip eröffnet neue Forschungsmöglichkeiten und Anwendungen

... mehr zu:
»Atomlaser »Materiewelle »Mikrochip

Vor nicht einmal zwei Jahren wurde über den Bau der ersten Atomlaser berichtet (vgl. PRI C 1/2000: "Wenn sich Materie als Welle zeigt"). Diese erzeugen Atomstrahlen, deren Eigenschaften denen eines Lasers in vielem gleichen. Jetzt ist es Physikern am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität in München gelungen, das Herzstück eines Atomlasers auf einem Mikrochip zu integrieren (Nature, 4. Oktober 2001). Damit wird die Erzeugung Laser-ähnlicher Materiewellen extrem vereinfacht, eine Leistung, die mit dem Übergang von einzelnen Transistor zur integrierten Mikroelektronik vergleichbar ist. Von Geräten mit Atomlasern erhofft man revolutionär neue Anwendungen, von der Hochpräzisionsmessung bis zum Quantencomputer.

Atome verhalten sich wie Wellen, die sich im Raum fortpflanzen und - ähnlich wie Lichtwellen - miteinander wechselwirken - das ist eine der wichtigsten Aussagen der Quantenmechanik. Wegen ihrer extremen Kleinheit und ihrer schnellen und unregelmäßigen Bewegung entziehen sich die Materiewellen jedoch dem Blick selbst der leistungsfähigsten Mikroskope. Das änderte sich vor einigen Jahren mit den ersten Experimenten zur "Bose-Einstein-Kondensation" drastisch: Mit Hilfe dieses lange vorausgesagten quantenmechanischen Effekts gelang es, Tausende von Atomen in den gleichen quantenmechanischen Zustand zu versetzen, und direkte Bilder dieser verstärkten atomaren Materiewelle aufzunehmen. Viele Wissenschaftler sind heute der Überzeugung, dass Bose-Einstein-Kondensate und Atomlaser zu revolutionär neuen Technologien führen werden - vergleichbar dem Laser, der so vielfältige Anwendungen wie Laser-Chirurgie, CD-Player oder Hochgeschwindigkeits-Telekommunikation erst ermöglicht hat. Wie die ersten Laser waren auch die ersten Atomlaser sehr komplizierte Apparaturen, die ganze Forschungslaboratorien ausfüllten. So verwendete man für den magnetischen Einschluss der Atome große, wassergekühlte Elektromagnete. Die Vakuumapparaturen mussten höchsten Ansprüchen genügen, um die Atome für lange Zeit von ihrer Umgebung zu isolieren und sie - für die Überführung in ein Bose-Einstein-Kondensat - fast bis auf den absoluten Nullpunkt abzukühlen.


Jetzt ist es Wolfgang Hänsel, Peter Hommelhoff, Theodor W. Hänsch und Jakob Reichel vom Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität München gelungen, die Herstellung von Bose-Einstein-Kondensaten bedeutend zu vereinfachen - auf einem briefmarkengroßen Mikrochip. Mikroskopische Leiterbahnen auf dem Chip ersetzen die großen Elektromagnete. Die ultrakalte Atomwolke des Kondensates schwebt nur Bruchteile eines Millimeters über diesen Leiterbahnen. Sie läßt sich auf diese Weise viel feiner kontrollieren - und nebenbei verringert die neue Methode erheblich den Stromverbrauch. Durch stärkeren magnetischen Einschluss reduziert sich die Zeit für die Erzeugung des Bose-Einstein-Kondensats von etwa einer Minute auf nur wenige Sekunden. Das wiederum reduziert die Anforderungen an das Vakuumsystem.

Die miniaturisierte Technik für Bose-Einstein-Kondensate hat noch einen weiteren, möglicherweise bedeutenderen Vorteil: Mit ihrer Hilfe können - wie in der Mikroelektronik - auf einem einzelnen Chip mehrere atom-optische Elemente integriert werden. Bereits in ihrem ersten Experiment ist es den Münchener Forschern gelungen, das empfindliche Bose-Einstein-Kondensat in einer Art "magnetischem Förderband" zu transportieren, das durch Wechselströme in zusätzlichen Leiterbahnen bewegt wird. Das verdeutlicht die Vielseitigkeit der neuen Technik und eröffnet neue Möglichkeiten, z.B. für ein integriertes Interferometer für Materiewellen - ein extrem sensibler Magnetsensor, für weitere Grundlagenexperimente zur Bose-Einstein-Kondensation oder für Anwendungen in der Quanteninformationsverarbeitung. Bereits jetzt ist abzusehen, dass viele Forschungslaboratorien die neue Chiptechnologie übernehmen werden, um Bose-Einstein-Kondensate in eigenen Anwendungen einzusetzen.

Weitere Informationen erhalten Sie von:

Dr. Jakob Reichel
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilian-Universität München
Tel.: 0 89 / 21 80 - 39 39 oder - 39 37
Fax: 0 89 / 28 51 92
E-Mail: jakob.reichel@physik.uni-muenchen.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri01/pri0159.pdf
http://www.mpq.mpg.de/
http://www.uni-muenchen.de/

Weitere Berichte zu: Atomlaser Materiewelle Mikrochip

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie