Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Mikrochip für Materiewellen

09.10.2001


Der Mikrochip kann mit einem in der Mikroelektronik üblichen lithographischen Verfahren hergestellt werden.


Der Mikrochip ist verkehrt herum in einer evakuierten Glaszelle montiert. Eine Silberschicht auf dem Chip reflektiert Laserstrahlen, die zum Einfangen der Rubidium-Atome aus dem Hintergrundgas benötigt werden.


Münchner Max-Planck-Forschern gelingt "Quantensprung" bei Miniaturisierung von Atomlasern / Mikrochip eröffnet neue Forschungsmöglichkeiten und Anwendungen

... mehr zu:
»Atomlaser »Materiewelle »Mikrochip

Vor nicht einmal zwei Jahren wurde über den Bau der ersten Atomlaser berichtet (vgl. PRI C 1/2000: "Wenn sich Materie als Welle zeigt"). Diese erzeugen Atomstrahlen, deren Eigenschaften denen eines Lasers in vielem gleichen. Jetzt ist es Physikern am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität in München gelungen, das Herzstück eines Atomlasers auf einem Mikrochip zu integrieren (Nature, 4. Oktober 2001). Damit wird die Erzeugung Laser-ähnlicher Materiewellen extrem vereinfacht, eine Leistung, die mit dem Übergang von einzelnen Transistor zur integrierten Mikroelektronik vergleichbar ist. Von Geräten mit Atomlasern erhofft man revolutionär neue Anwendungen, von der Hochpräzisionsmessung bis zum Quantencomputer.

Atome verhalten sich wie Wellen, die sich im Raum fortpflanzen und - ähnlich wie Lichtwellen - miteinander wechselwirken - das ist eine der wichtigsten Aussagen der Quantenmechanik. Wegen ihrer extremen Kleinheit und ihrer schnellen und unregelmäßigen Bewegung entziehen sich die Materiewellen jedoch dem Blick selbst der leistungsfähigsten Mikroskope. Das änderte sich vor einigen Jahren mit den ersten Experimenten zur "Bose-Einstein-Kondensation" drastisch: Mit Hilfe dieses lange vorausgesagten quantenmechanischen Effekts gelang es, Tausende von Atomen in den gleichen quantenmechanischen Zustand zu versetzen, und direkte Bilder dieser verstärkten atomaren Materiewelle aufzunehmen. Viele Wissenschaftler sind heute der Überzeugung, dass Bose-Einstein-Kondensate und Atomlaser zu revolutionär neuen Technologien führen werden - vergleichbar dem Laser, der so vielfältige Anwendungen wie Laser-Chirurgie, CD-Player oder Hochgeschwindigkeits-Telekommunikation erst ermöglicht hat. Wie die ersten Laser waren auch die ersten Atomlaser sehr komplizierte Apparaturen, die ganze Forschungslaboratorien ausfüllten. So verwendete man für den magnetischen Einschluss der Atome große, wassergekühlte Elektromagnete. Die Vakuumapparaturen mussten höchsten Ansprüchen genügen, um die Atome für lange Zeit von ihrer Umgebung zu isolieren und sie - für die Überführung in ein Bose-Einstein-Kondensat - fast bis auf den absoluten Nullpunkt abzukühlen.


Jetzt ist es Wolfgang Hänsel, Peter Hommelhoff, Theodor W. Hänsch und Jakob Reichel vom Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität München gelungen, die Herstellung von Bose-Einstein-Kondensaten bedeutend zu vereinfachen - auf einem briefmarkengroßen Mikrochip. Mikroskopische Leiterbahnen auf dem Chip ersetzen die großen Elektromagnete. Die ultrakalte Atomwolke des Kondensates schwebt nur Bruchteile eines Millimeters über diesen Leiterbahnen. Sie läßt sich auf diese Weise viel feiner kontrollieren - und nebenbei verringert die neue Methode erheblich den Stromverbrauch. Durch stärkeren magnetischen Einschluss reduziert sich die Zeit für die Erzeugung des Bose-Einstein-Kondensats von etwa einer Minute auf nur wenige Sekunden. Das wiederum reduziert die Anforderungen an das Vakuumsystem.

Die miniaturisierte Technik für Bose-Einstein-Kondensate hat noch einen weiteren, möglicherweise bedeutenderen Vorteil: Mit ihrer Hilfe können - wie in der Mikroelektronik - auf einem einzelnen Chip mehrere atom-optische Elemente integriert werden. Bereits in ihrem ersten Experiment ist es den Münchener Forschern gelungen, das empfindliche Bose-Einstein-Kondensat in einer Art "magnetischem Förderband" zu transportieren, das durch Wechselströme in zusätzlichen Leiterbahnen bewegt wird. Das verdeutlicht die Vielseitigkeit der neuen Technik und eröffnet neue Möglichkeiten, z.B. für ein integriertes Interferometer für Materiewellen - ein extrem sensibler Magnetsensor, für weitere Grundlagenexperimente zur Bose-Einstein-Kondensation oder für Anwendungen in der Quanteninformationsverarbeitung. Bereits jetzt ist abzusehen, dass viele Forschungslaboratorien die neue Chiptechnologie übernehmen werden, um Bose-Einstein-Kondensate in eigenen Anwendungen einzusetzen.

Weitere Informationen erhalten Sie von:

Dr. Jakob Reichel
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilian-Universität München
Tel.: 0 89 / 21 80 - 39 39 oder - 39 37
Fax: 0 89 / 28 51 92
E-Mail: jakob.reichel@physik.uni-muenchen.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri01/pri0159.pdf
http://www.mpq.mpg.de/
http://www.uni-muenchen.de/

Weitere Berichte zu: Atomlaser Materiewelle Mikrochip

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

 
VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Weitere B2B-VideoLinks
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen