Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Metalle spiegeln und Wärme leiten

15.12.2005


Wissenschaftlern des 1. Physikalischen Instituts der Universität Stuttgart gelang es erstmals, das in der Festkörperforschung sehr bekannte, nach dem Mathematiker und Physiker Paul Drude benannte "Drude-Modell" experimentell zu beweisen. Dies berichtet die Zeitschrift Nature in ihrer Ausgabe vom 22. Dezember 2005. Damit konnte eine der wichtigsten Theorien der Festkörperphysik über 100 Jahre nach ihrer Formulierung endlich durch Messungen untermauert werden. Das Modell zeigt auf, dass selbst komplexe Metalle sich in ihren dynamischen Eigenschaften über eine einzige Größe, die so genannte mittlere Stoßrate der Elektronen, charakterisieren lassen. Dies ermöglicht die Berechnung von Materialeigenschaften wie der optischen Reflektivität, der Wärmeleitfähigkeit sowie der elektrischen Leitfähigkeit.



Warum wird der Griff eines Kupferkessels heißer als der eines Edelstahltopfes? Wie kann man die Reflexion des Badezimmerspiegels erklären? Und warum leitet Metall den Strom so gut? Die drei Charakteristika eines Metalls scheinen auf den ersten Blick wenig miteinander zu tun zu haben. Tatsächlich jedoch haben sie eine gemeinsame Ursache, die durch Paul Drude um das Jahr 1900 erstmals beschrieben und später an die neuen Erkenntnisse der Quantenmechanik angepasst wurde. Demnach wird die Bewegung der Elektronen durch das Metall durch Stöße an Defekten gebremst. Die Zeitspanne, die zwischen zwei Kollisionen vergeht, bestimmt die Eigenschaften des Metalls.

... mehr zu:
»Physikalisch »Stoßrate


Die theoretische Beschreibung von Elektronen in Metallen ist aufgrund ihrer enormen Anzahl jedoch schwierig: eine typische Größenordnung ist 1023 - eine kaum vorstellbar große Zahl mit 23 Nullen. Obendrein stehen alle Teilchen miteinander und auch mit dem Rest des Systems in Wechselwirkungen.

Neues Konzept der Elektroneneigenschaften

Hier brachte Paul Drude ein neues Konzept ein. Dem Drude-Modell liegt die Annahme zu Grunde, dass lediglich zwei physikalische Größen zur vollständigen Beschreibung der entscheidenden Eigenschaften der Gesamtheit der metallischen Elektronen ausreichen: Die eine misst die effektive Anzahl der beweglichen Elektronen, die andere eine charakteristische Zeitdauer, die Relaxationszeit, für die Bewegung der Elektronen. Es war nun die Idee Paul Drudes, dass alleine die mittlere Stoßzeit das dynamische Verhalten der Elektronen vollständig beschreibt.

Diese Einfachheit und Anschaulichkeit machte Drudes Modell berühmt. Überprüft werden konnte die in jedem Lehrbuch der Festkörperphysik dargestellte Theorie jedoch bis dato nicht. Dies lag unter anderem daran, dass für typische Metalle die Stoßrate im infraroten Spektralbereich (also bei Lichtwellenlängen von Zehntel Millimetern) liegt, in welchem die Reflexion fast 100 Prozent beträgt. Optische Messungen sind bei weitem nicht genau genug, um die kleinen Abweichungen im Vergleich zu einem perfekten Spiegel zu messen. Zudem kann die Änderung der Phase, also die geringe Verzögerung der Lichtwelle bei der Reflexion, nicht bestimmt werden.

Um diese Schwierigkeiten zu umgehen, bedienten sich die Stuttgarter Wissenschaftler einiger Tricks. So wurde eine metallische Legierung gewählt, die auf Grund von elektronischen Wechselwirkungen extrem langsame Elektronen besitzt. Die Zeit zwischen zwei Stößen ist hierbei zehntausendmal länger. Folglich verschiebt sich die charakteristische Stoßrate in den Bereich der Mikrowellen, wo sehr genaue Messgeräte zur Verfügung stehen, um die elektrischen Eigenschaften in einem großen Spektralbereich zu bestimmen.

In jahrelanger Arbeit wurde am Stuttgarter Physikalischen Institut eine spezielle Mikrowellenapparatur entwickelt, die es erlaubt, bei Temperaturen nahe dem absoluten Nullpunkt von -273°C Präzisionsmessungen zu machen, hundertmal genauer als dies bisher möglich war. Um die Empfindlichkeit weiter zu steigern, wurden in Zusammenarbeit mit der Universität Mainz dünne Filme dieser Legierung hergestellt. Bei sehr tiefen Temperaturen wird dieses Metall supraleitend, was ideal zu Kalibrierung der Messvorrichtung ist.
Die Untersuchungen der Stuttgarter Physiker bestätigten exakt den Verlauf, den Paul Drude vor über hundert Jahren vorhergesagt hatte. "Es ist wichtig, zu zeigen, dass die klassischen Modelle auch auf komplexe Materialien angewandt werden können, wenn man sie nur richtig liest", betont Prof. Martin Dressel vom 1. Physikalischen Institut der Uni. "Zudem haben wir uns die experimentellen Techniken geschaffen, um physikalische Systeme zu untersuchen, wo dies nicht mehr möglich ist." Hierzu gehören beispielsweise eindimensionale Metalle, das heißt atomare Drähte.

Weitere Informationen: 1. Physikalisches Institut, Prof. Martin Dressel und Dr. Marc Scheffler, Tel. 0711/685-4947, e-mail: dressel@pi1.physik.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Berichte zu: Physikalisch Stoßrate

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie