Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Metalle spiegeln und Wärme leiten

15.12.2005


Wissenschaftlern des 1. Physikalischen Instituts der Universität Stuttgart gelang es erstmals, das in der Festkörperforschung sehr bekannte, nach dem Mathematiker und Physiker Paul Drude benannte "Drude-Modell" experimentell zu beweisen. Dies berichtet die Zeitschrift Nature in ihrer Ausgabe vom 22. Dezember 2005. Damit konnte eine der wichtigsten Theorien der Festkörperphysik über 100 Jahre nach ihrer Formulierung endlich durch Messungen untermauert werden. Das Modell zeigt auf, dass selbst komplexe Metalle sich in ihren dynamischen Eigenschaften über eine einzige Größe, die so genannte mittlere Stoßrate der Elektronen, charakterisieren lassen. Dies ermöglicht die Berechnung von Materialeigenschaften wie der optischen Reflektivität, der Wärmeleitfähigkeit sowie der elektrischen Leitfähigkeit.



Warum wird der Griff eines Kupferkessels heißer als der eines Edelstahltopfes? Wie kann man die Reflexion des Badezimmerspiegels erklären? Und warum leitet Metall den Strom so gut? Die drei Charakteristika eines Metalls scheinen auf den ersten Blick wenig miteinander zu tun zu haben. Tatsächlich jedoch haben sie eine gemeinsame Ursache, die durch Paul Drude um das Jahr 1900 erstmals beschrieben und später an die neuen Erkenntnisse der Quantenmechanik angepasst wurde. Demnach wird die Bewegung der Elektronen durch das Metall durch Stöße an Defekten gebremst. Die Zeitspanne, die zwischen zwei Kollisionen vergeht, bestimmt die Eigenschaften des Metalls.

... mehr zu:
»Physikalisch »Stoßrate


Die theoretische Beschreibung von Elektronen in Metallen ist aufgrund ihrer enormen Anzahl jedoch schwierig: eine typische Größenordnung ist 1023 - eine kaum vorstellbar große Zahl mit 23 Nullen. Obendrein stehen alle Teilchen miteinander und auch mit dem Rest des Systems in Wechselwirkungen.

Neues Konzept der Elektroneneigenschaften

Hier brachte Paul Drude ein neues Konzept ein. Dem Drude-Modell liegt die Annahme zu Grunde, dass lediglich zwei physikalische Größen zur vollständigen Beschreibung der entscheidenden Eigenschaften der Gesamtheit der metallischen Elektronen ausreichen: Die eine misst die effektive Anzahl der beweglichen Elektronen, die andere eine charakteristische Zeitdauer, die Relaxationszeit, für die Bewegung der Elektronen. Es war nun die Idee Paul Drudes, dass alleine die mittlere Stoßzeit das dynamische Verhalten der Elektronen vollständig beschreibt.

Diese Einfachheit und Anschaulichkeit machte Drudes Modell berühmt. Überprüft werden konnte die in jedem Lehrbuch der Festkörperphysik dargestellte Theorie jedoch bis dato nicht. Dies lag unter anderem daran, dass für typische Metalle die Stoßrate im infraroten Spektralbereich (also bei Lichtwellenlängen von Zehntel Millimetern) liegt, in welchem die Reflexion fast 100 Prozent beträgt. Optische Messungen sind bei weitem nicht genau genug, um die kleinen Abweichungen im Vergleich zu einem perfekten Spiegel zu messen. Zudem kann die Änderung der Phase, also die geringe Verzögerung der Lichtwelle bei der Reflexion, nicht bestimmt werden.

Um diese Schwierigkeiten zu umgehen, bedienten sich die Stuttgarter Wissenschaftler einiger Tricks. So wurde eine metallische Legierung gewählt, die auf Grund von elektronischen Wechselwirkungen extrem langsame Elektronen besitzt. Die Zeit zwischen zwei Stößen ist hierbei zehntausendmal länger. Folglich verschiebt sich die charakteristische Stoßrate in den Bereich der Mikrowellen, wo sehr genaue Messgeräte zur Verfügung stehen, um die elektrischen Eigenschaften in einem großen Spektralbereich zu bestimmen.

In jahrelanger Arbeit wurde am Stuttgarter Physikalischen Institut eine spezielle Mikrowellenapparatur entwickelt, die es erlaubt, bei Temperaturen nahe dem absoluten Nullpunkt von -273°C Präzisionsmessungen zu machen, hundertmal genauer als dies bisher möglich war. Um die Empfindlichkeit weiter zu steigern, wurden in Zusammenarbeit mit der Universität Mainz dünne Filme dieser Legierung hergestellt. Bei sehr tiefen Temperaturen wird dieses Metall supraleitend, was ideal zu Kalibrierung der Messvorrichtung ist.
Die Untersuchungen der Stuttgarter Physiker bestätigten exakt den Verlauf, den Paul Drude vor über hundert Jahren vorhergesagt hatte. "Es ist wichtig, zu zeigen, dass die klassischen Modelle auch auf komplexe Materialien angewandt werden können, wenn man sie nur richtig liest", betont Prof. Martin Dressel vom 1. Physikalischen Institut der Uni. "Zudem haben wir uns die experimentellen Techniken geschaffen, um physikalische Systeme zu untersuchen, wo dies nicht mehr möglich ist." Hierzu gehören beispielsweise eindimensionale Metalle, das heißt atomare Drähte.

Weitere Informationen: 1. Physikalisches Institut, Prof. Martin Dressel und Dr. Marc Scheffler, Tel. 0711/685-4947, e-mail: dressel@pi1.physik.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Berichte zu: Physikalisch Stoßrate

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise