Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lochkristall gefunden

05.12.2005


Physiker der Kieler Uni weisen ungewöhnlichen Materiezustand nach



Ein ungewöhnlicher Materiezustand, ein Kristall, der nur aus Löchern besteht, wurde an der Kieler Universität nachgewiesen: Wie in der aktuellen Ausgabe der Physical Review Letters (vom 02.12.05) berichtet, gelang einem internationalen Team unter Leitung von Professor Michael Bonitz, mit Hilfe von aufwändigen Computersimulationen erstmals der Beweis dieses exotischen Phänomens, über dessen Existenz bislang nur spekuliert wurde. Darüber hinaus konnten die Physiker Bedingungen für seine Entstehung vorhersagen.

... mehr zu:
»Lochkristall »Physik

"Wir wissen nun, dass dieser Effekt in Halbleitern mit einer ganz bestimmten Bandstruktur auftritt", so Bonitz. "In gewöhnlichen Festkörpern sind Elektronen und Löcher (sie entstehen, wenn Elektronen angeregt werden) weit ausgedehnt - eine Konsequenz der Quantenmechanik. Elektronen und Löcher durchdringen das Material wie eine Flüssigkeit." Wenn jedoch die Masse eines Lochs den kritischen Wert des 80fachen der Elektronenmasse übersteigt, verwandelt sich die Lochflüssigkeit spontan in einen Kristall. Des Weiteren liegen starke Hinweise vor, dass sich in derartigen Halbleitersystemen bei Verringerung des Drucks Bose-Kondensate von gebundenen Elektron-Loch Paaren (sogenannten Exzitonen) ausbilden können. "Die nächste spannende Frage ist, unsere Vorhersage zum Lochkristall in einem Experiment zu bestätigen", beschreibt der Physiker den weiteren Weg. Geeignete Materialsysteme seien bereits vorgeschlagen worden.

Der Lochkristall ist für den Wissenschaftler vom Institut für Theoretische Physik und Astrophysik auch aus einem weiteren Grund von Interesse: "Wir konnten zeigen, dass er viele Gemeinsamkeiten mit ganz anderen Kristallen, wie etwa Plasmakristallen oder Ionenkristallen, besitzt." Besonders reizvoll sei, dass der Lochkristall viele Ähnlichkeiten mit einigen der rätselhaftesten Objekte im Universum - Weißen Zwergen und Neutronensternen - besitzt. In diesen exotischen, weit entfernten Objekten vermutet man die Existenz eines Ionenkristalls. "Wichtige Eigenschaften dieser Systeme", hofft Bonitz, "lassen sich möglicherweise bald im Labor an einem Lochkristall studieren".


Dieser ungewöhnliche Kristall sei auch für die Materialforschung von Interesse, so Bonitz, "weil er möglicherweise günstige Voraussetzungen für Supraleitung bietet." Während Supraleitung (Stromfluss ohne Widerstand) derzeit nur bei extrem tiefen Temperaturen funktioniert, erwartet z.B. der Physik-Nobelpreisträger von 2003, Alexei Abrikosov, dass Systeme mit einem Lochkristall schon bei wesentlich höheren Temperaturen supraleitend werden. Eine Herausforderung für die Kieler Wissenschaftler und ihre Partner: "Ein wichtiges Ziel unserer weiteren Untersuchungen wird es sein, diese Vorhersagen zu überprüfen".

Professor Michael Bonitz arbeitete für seine Forschungen mit einem deutsch-russischen Wissenschaftlerteam zusammen, zu dem Professor Holger Fehske (Uni Greifswald) und Dr. Vladimir S. Filinov (Institute for High Energy Density, Moskau) gehörten. Das Projekt ist Teil des kürzlich von der Deutschen Forschungsgemeinschaft bewilligten Transregio-Sonderforschungsbereiches 24 "Grundlagen komplexer Plasmen", der an den Universitäten Greifswald und Kiel angesiedelt ist.

Die American Physics Society berichtet über die Forschungsergebnisse in ihrer online-Zeitschrift Physical Review Focus: http://focus.aps.org/story/v16/st17

Kontakt:
Christian-Albrechts-Universität zu Kiel
Professor Michael Bonitz
Tel. ++49/(0)431/880-4122, -4117
bonitz@physik.uni-kiel.de

Susanne Schuck | idw
Weitere Informationen:
http://www.theo-physik.uni-kiel.de/~bonitz

Weitere Berichte zu: Lochkristall Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics