Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos unter Quanten

04.11.2005


Die einzelnen Atome aus dem Rubidium-Atomstrahl fliegen durch eine quaderförmige Anordnung. Darin herrschen zugleich ein starkes magnetisches und ein elektrisches Feld: Magnetspulen erzeugen ein Magnetfeld, und zwischen der inneren Elektrode (orange) und der Mantelelektrode (grün) besteht ein elektrisches Feld. Das Laserlicht, das den Fotoeffekt auslöst, hat eine einstellbare Frequenz. Die Messung des Fotoeffekts erfolgt in drei Schritten: (1) Jedes durch den Laserstrahl fliegende Atom schluckt mit einer gewissen Wahrscheinlichkeit, die von der Lichtfrequenz abhängt, ein Photon aus dem Laserstrahl. Dabei zerfällt es in ein (Photo-)Elektron und ein Rubidiumion. (2) Unter dem Einfluss des Magnetfelds und des elektrischen Felds bewegen sich die Photoelektronen um die innere Elektrode. Wenn die Felder die geeignete Form besitzen, verlassen die Elektronen die quaderförmige Anordnung bei der roten Elektrode und werden so räumlich von den Rubidiumionen getrennt. (3) Während Rubidiumionen und nicht zerfallene Rubidiumatome von einem Metallzylinder aufgefangen werden, trifft der aus den Photoelektronen bestehende Photostrom auf einen Detektor und wird dort nachgewiesen. Bild: Max-Planck-Institut für Quantenoptik


Garchinger Max-Planck-Forscher weisen erstmals Quantenchaos bei der Ionisation von Atomen nach


Wissenschaftler am Max-Planck-Institut für Quantenoptik haben bei der Untersuchung des chaotischen Verhaltens in der Quantenwelt zum ersten Mal Quantenchaos bei der Ionisation von Atomen zeigen können. Mit Hilfe von Laserlicht lösten sie Elektronen in starken elektromagnetischen Feldern aus einzelnen Rubidiumatomen. Anschließend maßen sie typische Schwankungen im Elektronenstrom in Abhängigkeit von der Frequenz des Laserlichtes, die auf die chaotische Bewegung der Elektronen zurückzuführen sind. Das Experiment basiert auf einem Versuch aus den Anfangszeiten der Quantenmechanik, dem Nachweis des Fotoeffektes (Physical Review Letters, 4. November 2005).

In der makroskopischen Alltagswelt des Menschen herrscht oft "deterministisches Chaos": Wie sich Wetter- und Strömungsverhältnissen in Zukunft entwickeln, wie sich Himmelskörper bewegen oder wie eine Insektenpopulation wächst, das lässt sich exakt in Formeln beschreiben, diese Vorgänge sind "deterministisch". Doch wie sie sich entwickeln, das hängt zugleich sehr empfindlich von den Startwerten ab. Schon der geringste Fehler bei der Messung des Ausgangszustandes kann eine langfristige Vorhersage unmöglich machen - Physiker sprechen davon, die Vorgänge seien "chaotisch".


Auch mikroskopische Vorgänge können sehr komplex sein. Doch die Quantenmechanik schließt ein "deterministisches Chaos" für Welt der Atome strikt aus - unter anderem deshalb, weil sich quantenmechanische Systeme nichtdeterministisch aus vielen gleichzeitigen Anfangszuständen entwickeln. In der Quantenchaosforschung suchen Physiker daher in der Welt der Quanten nach Entsprechungen zum deterministischen Chaos der Alltagswelt. So erforschen Wissenschaftler des Max-Planck-Institut für Quantenoptik quantenmechanische Systeme, die nach den Regeln der makroskopischen Physik deterministisch chaotisch wären.

Den Wissenschaftlern um Gernot Stania und Herbert Walther gelang jetzt der erste experimentelle Nachweis von Quantenchaos in einem System, in dem sich die Bestandteile während des Experiments im Prinzip beliebig weit in alle Richtungen entfernen können. Sie griffen dabei auf ein historisches Experiment zurück: Einen Versuch zum Nachweis des Fotoeffektes, bei dem Elektronen aus einem Metall freigesetzt werden, sobald man sie mit Licht bestrahlt.

Klassisch wird dabei eine elektrische Spannung an zwei gegenüberliegende Metallplatten angelegt, von denen eine mit einem Alkalimetall überzogen ist. Das Alkalimetall bestrahlt man mit Licht einer bestimmten Frequenz (und damit Energie). Sobald die Energie ein bestimmtes Maß übersteigt, löst das Licht Elektronen aus dem Metall heraus, die als elektrischer Strom nachweisbar sind. Vor hundert Jahren veröffentlichte Albert Einstein seine Erklärung für diesen Effekt, die entscheidend für die Entwicklung der Quantentheorie wurde und 1921 mit dem Nobelpreis ausgezeichnet wurde.

Die Wissenschaftler am Max-Planck-Institut für Quantenoptik passten dieses Experiment an ihre Bedürfnisse an: In der modernen Fassung wird das Alkalimetall nicht auf eine Metallplatte aufgetragen, sondern fliegt als Strahl aus einzelnen Rubidiumatomen durch den Versuchsaufbau (vgl. Abb. 1). Die Atome werden dort einem elektrischen Feld und einem starken Magnetfeld ausgesetzt. Wie beim historischen Experiment bestrahlt man nun die Atome mit Licht einer bestimmten Frequenz, das aus den Atomen Elektronen herauslösen kann. Dieser Strom aus Elektronen wird in Abhängigkeit von der Lichtfrequenz gemessen.

Mit dem Magnetfeld, dem elektrischen Feld und den elektrostatischen Kräften im Atom (Anziehung von Protonen und Elektronen) wirken drei unterschiedliche Kräfte auf die (Leucht-)Elektronen in den Rubidium-Atomen, die jeweils sehr unterschiedliche Elektronenbewegungen hervorrufen. Solange eine dieser Kräfte überwiegt, ist die Bewegung des Elektrons einfach und nicht chaotisch - das ist beispielsweise der Fall, wenn das Elektron noch kein Laserlicht absorbiert hat und sich in der Nähe des Atomkerns aufhält. Doch in dem Moment, in dem das Elektron ein Lichtteilchen aufnimmt, gerät es in einen energetisch höheren Zustand, und damit stärker in den Einfluss des äußeren elektromagnetischen Feldes - und seine Bewegung wird chaotisch. Im Zuge dieser Bewegung entfernt es sich immer weiter vom Kern, bis es frei ist.

Das Chaos in der Bewegung zeigt sich darin, dass der Strom aus Elektronen in einer bestimmten Weise schwankt, und zwar passend zur Energie der Lichtteilchen; diese Schwankung wird auch als Ericson-Fluktuation bezeichnet. Den Forschern gelang es nicht nur, die Ericson-Fluktuation nachzuweisen, sie konnte darüber hinaus auch mit Hilfe des Versuchaufbaus über die Stärke des elektrischen und magnetischen Feldes einstellen, wie chaotisch sich das System nach den Regeln der makroskopischen Physik verhält. Damit konnten sie den Zusammenhang zwischen deterministischem Chaos und den Fluktuationen des Photostroms nachweisen: Je chaotischer das System nach den Regeln der makroskopischen Physik reagierte, desto stärker waren die gemessenen Fluktuationen.

Originalveröffentlichung:

G. Stania, H. Walther
Quantum Chaotic Scattering in Atomic Physics: Ericson Fluctuations in Photoionization
Physical Review Letters, 4 November 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Alkalimetall Atom Elektron Max-Planck-Institut Physik Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften