Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos unter Quanten

04.11.2005


Die einzelnen Atome aus dem Rubidium-Atomstrahl fliegen durch eine quaderförmige Anordnung. Darin herrschen zugleich ein starkes magnetisches und ein elektrisches Feld: Magnetspulen erzeugen ein Magnetfeld, und zwischen der inneren Elektrode (orange) und der Mantelelektrode (grün) besteht ein elektrisches Feld. Das Laserlicht, das den Fotoeffekt auslöst, hat eine einstellbare Frequenz. Die Messung des Fotoeffekts erfolgt in drei Schritten: (1) Jedes durch den Laserstrahl fliegende Atom schluckt mit einer gewissen Wahrscheinlichkeit, die von der Lichtfrequenz abhängt, ein Photon aus dem Laserstrahl. Dabei zerfällt es in ein (Photo-)Elektron und ein Rubidiumion. (2) Unter dem Einfluss des Magnetfelds und des elektrischen Felds bewegen sich die Photoelektronen um die innere Elektrode. Wenn die Felder die geeignete Form besitzen, verlassen die Elektronen die quaderförmige Anordnung bei der roten Elektrode und werden so räumlich von den Rubidiumionen getrennt. (3) Während Rubidiumionen und nicht zerfallene Rubidiumatome von einem Metallzylinder aufgefangen werden, trifft der aus den Photoelektronen bestehende Photostrom auf einen Detektor und wird dort nachgewiesen. Bild: Max-Planck-Institut für Quantenoptik


Garchinger Max-Planck-Forscher weisen erstmals Quantenchaos bei der Ionisation von Atomen nach


Wissenschaftler am Max-Planck-Institut für Quantenoptik haben bei der Untersuchung des chaotischen Verhaltens in der Quantenwelt zum ersten Mal Quantenchaos bei der Ionisation von Atomen zeigen können. Mit Hilfe von Laserlicht lösten sie Elektronen in starken elektromagnetischen Feldern aus einzelnen Rubidiumatomen. Anschließend maßen sie typische Schwankungen im Elektronenstrom in Abhängigkeit von der Frequenz des Laserlichtes, die auf die chaotische Bewegung der Elektronen zurückzuführen sind. Das Experiment basiert auf einem Versuch aus den Anfangszeiten der Quantenmechanik, dem Nachweis des Fotoeffektes (Physical Review Letters, 4. November 2005).

In der makroskopischen Alltagswelt des Menschen herrscht oft "deterministisches Chaos": Wie sich Wetter- und Strömungsverhältnissen in Zukunft entwickeln, wie sich Himmelskörper bewegen oder wie eine Insektenpopulation wächst, das lässt sich exakt in Formeln beschreiben, diese Vorgänge sind "deterministisch". Doch wie sie sich entwickeln, das hängt zugleich sehr empfindlich von den Startwerten ab. Schon der geringste Fehler bei der Messung des Ausgangszustandes kann eine langfristige Vorhersage unmöglich machen - Physiker sprechen davon, die Vorgänge seien "chaotisch".


Auch mikroskopische Vorgänge können sehr komplex sein. Doch die Quantenmechanik schließt ein "deterministisches Chaos" für Welt der Atome strikt aus - unter anderem deshalb, weil sich quantenmechanische Systeme nichtdeterministisch aus vielen gleichzeitigen Anfangszuständen entwickeln. In der Quantenchaosforschung suchen Physiker daher in der Welt der Quanten nach Entsprechungen zum deterministischen Chaos der Alltagswelt. So erforschen Wissenschaftler des Max-Planck-Institut für Quantenoptik quantenmechanische Systeme, die nach den Regeln der makroskopischen Physik deterministisch chaotisch wären.

Den Wissenschaftlern um Gernot Stania und Herbert Walther gelang jetzt der erste experimentelle Nachweis von Quantenchaos in einem System, in dem sich die Bestandteile während des Experiments im Prinzip beliebig weit in alle Richtungen entfernen können. Sie griffen dabei auf ein historisches Experiment zurück: Einen Versuch zum Nachweis des Fotoeffektes, bei dem Elektronen aus einem Metall freigesetzt werden, sobald man sie mit Licht bestrahlt.

Klassisch wird dabei eine elektrische Spannung an zwei gegenüberliegende Metallplatten angelegt, von denen eine mit einem Alkalimetall überzogen ist. Das Alkalimetall bestrahlt man mit Licht einer bestimmten Frequenz (und damit Energie). Sobald die Energie ein bestimmtes Maß übersteigt, löst das Licht Elektronen aus dem Metall heraus, die als elektrischer Strom nachweisbar sind. Vor hundert Jahren veröffentlichte Albert Einstein seine Erklärung für diesen Effekt, die entscheidend für die Entwicklung der Quantentheorie wurde und 1921 mit dem Nobelpreis ausgezeichnet wurde.

Die Wissenschaftler am Max-Planck-Institut für Quantenoptik passten dieses Experiment an ihre Bedürfnisse an: In der modernen Fassung wird das Alkalimetall nicht auf eine Metallplatte aufgetragen, sondern fliegt als Strahl aus einzelnen Rubidiumatomen durch den Versuchsaufbau (vgl. Abb. 1). Die Atome werden dort einem elektrischen Feld und einem starken Magnetfeld ausgesetzt. Wie beim historischen Experiment bestrahlt man nun die Atome mit Licht einer bestimmten Frequenz, das aus den Atomen Elektronen herauslösen kann. Dieser Strom aus Elektronen wird in Abhängigkeit von der Lichtfrequenz gemessen.

Mit dem Magnetfeld, dem elektrischen Feld und den elektrostatischen Kräften im Atom (Anziehung von Protonen und Elektronen) wirken drei unterschiedliche Kräfte auf die (Leucht-)Elektronen in den Rubidium-Atomen, die jeweils sehr unterschiedliche Elektronenbewegungen hervorrufen. Solange eine dieser Kräfte überwiegt, ist die Bewegung des Elektrons einfach und nicht chaotisch - das ist beispielsweise der Fall, wenn das Elektron noch kein Laserlicht absorbiert hat und sich in der Nähe des Atomkerns aufhält. Doch in dem Moment, in dem das Elektron ein Lichtteilchen aufnimmt, gerät es in einen energetisch höheren Zustand, und damit stärker in den Einfluss des äußeren elektromagnetischen Feldes - und seine Bewegung wird chaotisch. Im Zuge dieser Bewegung entfernt es sich immer weiter vom Kern, bis es frei ist.

Das Chaos in der Bewegung zeigt sich darin, dass der Strom aus Elektronen in einer bestimmten Weise schwankt, und zwar passend zur Energie der Lichtteilchen; diese Schwankung wird auch als Ericson-Fluktuation bezeichnet. Den Forschern gelang es nicht nur, die Ericson-Fluktuation nachzuweisen, sie konnte darüber hinaus auch mit Hilfe des Versuchaufbaus über die Stärke des elektrischen und magnetischen Feldes einstellen, wie chaotisch sich das System nach den Regeln der makroskopischen Physik verhält. Damit konnten sie den Zusammenhang zwischen deterministischem Chaos und den Fluktuationen des Photostroms nachweisen: Je chaotischer das System nach den Regeln der makroskopischen Physik reagierte, desto stärker waren die gemessenen Fluktuationen.

Originalveröffentlichung:

G. Stania, H. Walther
Quantum Chaotic Scattering in Atomic Physics: Ericson Fluctuations in Photoionization
Physical Review Letters, 4 November 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Alkalimetall Atom Elektron Max-Planck-Institut Physik Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie