Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Planetenbildung auch um "misslungene Sterne"

21.10.2005


Internationales Astronomenteam weist nach, dass sich erste Schritte zur Bildung von Planeten auch bei Braunen Zwergen vollziehen


Mit dem Weltraumteleskop SPITZER der NASA hat ein Gruppe von Astronomen aus deutschen, amerikanischen und italienischen Forschungsinstituten entdeckt, dass die Planetenbildung zumindest im Ansatz auch in der Umgebung von Braunen Zwergen, also "misslungenen Sternen" abläuft. Damit erweist sich der Prozess der Planetenbildung als universeller und robuster als bisher vermutet.

Braune Zwerge entstehen wie ihre massereicheren Geschwister, die normalen Sterne, durch den Kollaps interstellarer Gas- und Staubwolken. Bei einem solcher Kollaps bildet sich eine zentrale Verdichtung, eingebettet in eine rotierende Scheibe aus Gas und Staub. Solche zirkumstellaren Scheiben strahlen entsprechend ihrer Temperatur im infraroten Spektralbereich. Mit dem Weltraumteleskop SPITZER wurden sie in der Umgebung zahlreicher junger Brauner Zwerge entdeckt.


Der Kollaps der Gas- und Staubwolken endet, wenn der Anstieg von Druck, Temperatur und Dichte in der zentralen Verdichtung zum Einsetzen des Wasserstoffbrennens (Kernfusion) führt - damit wird die zentrale Verdichtung zu einem eigentlichen Stern. Reicht jedoch ihre Masse nicht aus, um die für Kernfusion erforderlichen Bedingungen herbeizuführen, so entsteht ein Brauner Zwerg: Er wird sich keine weiteren Energiequellen mehr erschließen können und bloß die durch den Kollaps erzeugte Kompressionswärme langsam abstrahlen.

Das Astronomenteam hat sechs junge Braune Zwerge aus dem 520 Lichtjahre entfernten Sternentstehungsgebiet im südlichen Sternbild Chamaeleon untersucht. Die Objekte sind zwischen einer und drei Millionen Jahre alt, ihre Massen betragen zwischen dem 40- und dem 70fachen der Jupitermasse. Mit SPITZER nahmen die Forscher detaillierte Spektren im infraroten Licht auf, aus denen sich Informationen über die Größen der strahlenden Teilchen und deren mineralogische Zusammensetzung ableiten lassen.

Die Analyse der Daten ergab in fünf der sechs untersuchten Fälle, dass in den zirkumstellaren Scheiben dieser "misslungenen Sterne" die Staubteilchen aneinander haften und bereits größere Klumpen aus Olivin, einem siliziumhaltigen Mineral, und kristalline Strukturen bilden. Solche Gebilde sind aus Untersuchungen der Scheiben junger normaler Sterne bekannt und finden sich auch in Kometen - den Überresten aus der Bildungsphase unseres eigenen Planetensystems. Offenbar laufen also in den zirkumstellaren Scheiben der jungen Braunen Zwerge die selben Wachstums- und Kristallisationsprozesse ab, die bei normalen Sternen (einschließlich unserer Sonne) am Anfang der Planetenbildung stehen.

Weiterhin fanden sich Hinweise auf ein Abflachen der zirkumstellaren Scheiben, das beim Einsetzen der Wachstumsprozesse in der Staubkomponente auch zu erwarten ist. "Mit SPITZER können wir die Planetenbildung unter ganz unterschiedlichen Bedingungen untersuchen. Unsere Beobachtungen zeigen, dass die ersten Schritte der Planetenbildung in geringerem Maße von den Details abhängen als bisher vermutet", sagte Daniel Apai, der gegenwärtig am Steward-Observatorium in Tucson forscht und Mitglied des NASA Astrobiology Institute’s Life and Planets Astrobiology Center ist. Und Kees Dullemond vom Max-Planck-Institut für Astronomie betont: "Dieses Ergebnis ist auch deshalb so wichtig, weil es die Theorien über Planetenbildung einschränkt und uns damit tiefere Einblicke in diesen Prozess ermöglicht".

Diese Beobachtungsergebnisse zeigen, das es sich bei zukünftigen Missionen zur Suche nach extrasolaren Planeten, wie die Mission DARWIN der ESA und der Terrestrial Planet Finder (TPF) der NASA, lohnen könnte, auch die Umgebung Brauner Zwerge nach Planeten zu untersuchen.

Solche Spektren erhält man, wenn man das vom Teleskop gesammelte Licht nach seinen Wellenlängen zerlegt, ähnlich wie ein Wassertropfen oder ein Prisma das Sonnenlicht in seine Regenbogenfarben auflöst. Die breiten, bei unterschiedlichen Wellenlängen auftretenden "Buckel" sind die "Fingerabdrücke", aus denen chemische Merkmale (silikathaltig, etc.), die Größe und der Aggregatzustand (amorph bis kristallin) der Staubteilchen abgelesen werden können.

In der Abbildung markieren die hellgrünen vertikalen Streifen die Lage der "Fingerabdrücke" von Kristallen, die primär aus dem auf der Erde vorkommenden, grünen, silikathaltigen Mineral Olivin bestehen. Offenbar enthalten die Spektren von dreien der vier Braunen Zwerge Anteile solcher Art. Im interstellaren Staub sind sie nicht erkennbar, am stärksten sind sie im Spektrum des Kometen Hale-Bopp ausgeprägt. Je größer die Staubteilchen, desto breiter sind die "Buckel" in ihrem Emissionsspektrum.

Weitere Informationen erhalten Sie von:

Dr. Klaus Jäger
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: ++49 6221 528 379
E-Mail: jaeger@mpia.de

Dr. Cornelis P. Dullemond
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: ++49 6221 528 395
E-Mail: dullemond@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: ++49 6221 528 229
E-Mail: staude@mpia.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Astronomie Planetenbildung SPITZER

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit