Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Planetenbildung auch um "misslungene Sterne"

21.10.2005


Internationales Astronomenteam weist nach, dass sich erste Schritte zur Bildung von Planeten auch bei Braunen Zwergen vollziehen


Mit dem Weltraumteleskop SPITZER der NASA hat ein Gruppe von Astronomen aus deutschen, amerikanischen und italienischen Forschungsinstituten entdeckt, dass die Planetenbildung zumindest im Ansatz auch in der Umgebung von Braunen Zwergen, also "misslungenen Sternen" abläuft. Damit erweist sich der Prozess der Planetenbildung als universeller und robuster als bisher vermutet.

Braune Zwerge entstehen wie ihre massereicheren Geschwister, die normalen Sterne, durch den Kollaps interstellarer Gas- und Staubwolken. Bei einem solcher Kollaps bildet sich eine zentrale Verdichtung, eingebettet in eine rotierende Scheibe aus Gas und Staub. Solche zirkumstellaren Scheiben strahlen entsprechend ihrer Temperatur im infraroten Spektralbereich. Mit dem Weltraumteleskop SPITZER wurden sie in der Umgebung zahlreicher junger Brauner Zwerge entdeckt.


Der Kollaps der Gas- und Staubwolken endet, wenn der Anstieg von Druck, Temperatur und Dichte in der zentralen Verdichtung zum Einsetzen des Wasserstoffbrennens (Kernfusion) führt - damit wird die zentrale Verdichtung zu einem eigentlichen Stern. Reicht jedoch ihre Masse nicht aus, um die für Kernfusion erforderlichen Bedingungen herbeizuführen, so entsteht ein Brauner Zwerg: Er wird sich keine weiteren Energiequellen mehr erschließen können und bloß die durch den Kollaps erzeugte Kompressionswärme langsam abstrahlen.

Das Astronomenteam hat sechs junge Braune Zwerge aus dem 520 Lichtjahre entfernten Sternentstehungsgebiet im südlichen Sternbild Chamaeleon untersucht. Die Objekte sind zwischen einer und drei Millionen Jahre alt, ihre Massen betragen zwischen dem 40- und dem 70fachen der Jupitermasse. Mit SPITZER nahmen die Forscher detaillierte Spektren im infraroten Licht auf, aus denen sich Informationen über die Größen der strahlenden Teilchen und deren mineralogische Zusammensetzung ableiten lassen.

Die Analyse der Daten ergab in fünf der sechs untersuchten Fälle, dass in den zirkumstellaren Scheiben dieser "misslungenen Sterne" die Staubteilchen aneinander haften und bereits größere Klumpen aus Olivin, einem siliziumhaltigen Mineral, und kristalline Strukturen bilden. Solche Gebilde sind aus Untersuchungen der Scheiben junger normaler Sterne bekannt und finden sich auch in Kometen - den Überresten aus der Bildungsphase unseres eigenen Planetensystems. Offenbar laufen also in den zirkumstellaren Scheiben der jungen Braunen Zwerge die selben Wachstums- und Kristallisationsprozesse ab, die bei normalen Sternen (einschließlich unserer Sonne) am Anfang der Planetenbildung stehen.

Weiterhin fanden sich Hinweise auf ein Abflachen der zirkumstellaren Scheiben, das beim Einsetzen der Wachstumsprozesse in der Staubkomponente auch zu erwarten ist. "Mit SPITZER können wir die Planetenbildung unter ganz unterschiedlichen Bedingungen untersuchen. Unsere Beobachtungen zeigen, dass die ersten Schritte der Planetenbildung in geringerem Maße von den Details abhängen als bisher vermutet", sagte Daniel Apai, der gegenwärtig am Steward-Observatorium in Tucson forscht und Mitglied des NASA Astrobiology Institute’s Life and Planets Astrobiology Center ist. Und Kees Dullemond vom Max-Planck-Institut für Astronomie betont: "Dieses Ergebnis ist auch deshalb so wichtig, weil es die Theorien über Planetenbildung einschränkt und uns damit tiefere Einblicke in diesen Prozess ermöglicht".

Diese Beobachtungsergebnisse zeigen, das es sich bei zukünftigen Missionen zur Suche nach extrasolaren Planeten, wie die Mission DARWIN der ESA und der Terrestrial Planet Finder (TPF) der NASA, lohnen könnte, auch die Umgebung Brauner Zwerge nach Planeten zu untersuchen.

Solche Spektren erhält man, wenn man das vom Teleskop gesammelte Licht nach seinen Wellenlängen zerlegt, ähnlich wie ein Wassertropfen oder ein Prisma das Sonnenlicht in seine Regenbogenfarben auflöst. Die breiten, bei unterschiedlichen Wellenlängen auftretenden "Buckel" sind die "Fingerabdrücke", aus denen chemische Merkmale (silikathaltig, etc.), die Größe und der Aggregatzustand (amorph bis kristallin) der Staubteilchen abgelesen werden können.

In der Abbildung markieren die hellgrünen vertikalen Streifen die Lage der "Fingerabdrücke" von Kristallen, die primär aus dem auf der Erde vorkommenden, grünen, silikathaltigen Mineral Olivin bestehen. Offenbar enthalten die Spektren von dreien der vier Braunen Zwerge Anteile solcher Art. Im interstellaren Staub sind sie nicht erkennbar, am stärksten sind sie im Spektrum des Kometen Hale-Bopp ausgeprägt. Je größer die Staubteilchen, desto breiter sind die "Buckel" in ihrem Emissionsspektrum.

Weitere Informationen erhalten Sie von:

Dr. Klaus Jäger
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: ++49 6221 528 379
E-Mail: jaeger@mpia.de

Dr. Cornelis P. Dullemond
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: ++49 6221 528 395
E-Mail: dullemond@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: ++49 6221 528 229
E-Mail: staude@mpia.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Astronomie Planetenbildung SPITZER

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics