Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kometen eher "eisige Staubbälle" als "schmutzige Schneebälle"?

13.10.2005


Max-Planck-Forscher in Katlenburg-Lindau blicken mit den Kameras OSIRIS ins Innere des Kometen Tempel 1


Entwicklung des Kometenstaubs. Links ist das Bild des Kometen vor dem Einschlag zu sehen, rechts ein Bildausschnitt zehn Minuten vor dem Einschlag sowie 21 Stunden und 47 Stunden danach. Die projizierte Richtung zur Sonne ist nach oben, die Bewegungsrichtung des Kometen und des Projektils sind eingezeichnet. Bild: Max-Planck-Institut für Sonnensystemforschung


Entwicklung des Kometenstaubs. Bilder des Kometen vor dem Einschlag wurden von den Bildern subtrahiert, so dass nur die beim Einschlag erzeugte Wolke sichtbar ist. Die projizierte Richtung zur Sonne ist nach oben, v zeigt die Bewegungsrichtung des Kometen an. Bild: Max-Planck-Institut für Sonnensystemforschung und Laboratoire d’Astrophysique de Marseille



Als die NASA am 4. Juli 2005 ein Projektil in den Kometen Tempel 1 schoss, um Kometenmaterial in den Weltraum zu schleudern, da verfolgten Wissenschaftler das Ereignis unter anderem mit Hilfe der OSIRIS-Kameras an Bord der ESA-Kometensonde Rosetta, die unter Federführung des Max-Planck-Instituts für Sonnensystemforschung entwickelt worden waren. Die Kameras filmten den Kometen von fünf Tagen vor dem Einschlag bis zehn Tage nach dem Einschlag. Aus den OSIRIS-Messungen des Auswurfs schließen Forscher jetzt, dass der Komet mehr Staub als Wasser enthält (Nature, 13. Oktober 2005 und Science, 14. Oktober 2005).

... mehr zu:
»Einschlag »Komet »OSIRIS


Die Max-Planck-Forscher beobachteten die Folgen des Einschlags des 380 Kilogramm schweren Kupfer-Projektils, das mit einer Geschwindigkeit von 10 km/s in die Kometenoberfläche gerast war, und verglichen die Daten mit denen der normalen Koma - des "Schweifs" - des Kometen vor und nach dem Ereignis. Die Koma besteht vor allem aus Wasserdampf und Staub, die durch Sonneneinstrahlung von der Oberfläche des Kometen abgelöst werden. Das Eis geht dabei in den gasförmigen Zustand über, ohne zu verflüssigen; es "sublimiert". Die frei werdenden Moleküle werden schneller, reißen die Staubteilchen mit und beschleunigen sie zusätzlich.

Der Staub in der Koma ist sichtbar, da er das Sonnenlicht reflektiert. Der beim Einschlag freigesetzte Staub wurde mit der Telekamera (Narrow Angle Camera) von OSIRIS mit einer Auflösung am Kometen von 3000 Kilometer beobachtet.

In den Stunden und Tagen nach dem Einschlag zeigte sich der zusätzliche Staub durch einen Helligkeitszuwachs in der Koma des Kometen (s. Abb. 1). Es bildete sich zunächst eine Wolke, die aufgrund der Geometrie des Auswurfs aus dem Krater halbkreisförmig war. Später wurde der Staub durch den Strahlungsdruck der Sonne von der Sonne weg beschleunigt.

Aufgrund der Entfernung der Staubwolke vom Kern in verschiedenen Bildern kann man die Geschwindigkeit des Staubs abschätzen: Die Staubteilchen entfernten sich mit einer typischen Geschwindigkeit von ca. 110 m/s vom Kern, die schnellsten Teilchen mit mindestens 300 m/s.

Der Anstieg der Helligkeit durch den beim Einschlag erzeugten Staub dauerte ungefähr 40 Minuten (s. Abb. 3). Es wird vermutet, dass ein Großteil des Materials den Kometenkern beim Einschlag als eishaltige Staubkörner (icy grains) verlassen hat. Danach waren die einzelnen Körner dem Sonnenlicht ausgesetzt und sublimierten. Der Staub in den Körnern zerbröselte bei diesem Prozess. Mehr Staub hat eine größere Oberfläche und reflektiert so mehr Sonnenlicht; so steigt die Helligkeit an.

Die Wassermoleküle (H2O) werden durch die ultraviolette Strahlung der Sonne zerlegt, größtenteils in OH + H. Die OH-Radikale fluoreszieren und konnten daher mit der Weitwinkelkamera (wide angle camera) von OSIRIS gemessen werden. Daraus wurde die beim Einschlag erzeugte Menge von Wasser berechnet. Sie ist mit 4.500 Tonnen deutlich geringer als die geschätzte Gesamtmasse der Staubteilchen, die aus der Helligkeit des Staubes bestimmt wird. Die Forscher vermuten daher, dass die Vorstellung vom Kometen als einem "schmutzigen Schneeball" aus den 1950er Jahren wohl korrigiert werden sollte - Tempel 1 hat sich eher als "eisiger Staubball" entpuppt.

Die Kameras gaben noch weiteren Einblick ins Innere des Kometen: Das Molekül-Radikal CN kommt im Auswurf des Einschlags relativ zum Wasser etwas häufiger vor als in der normalen Koma vor und nach dem Einschlag. Daraus lässt sich schließen, dass es sich das Innere des Kometenkerns chemisch anders zusammensetzt als seine Oberfläche. Und: In den Stunden und Tagen nach dem Einschlag wurde keine erhöhte Aktivität des Kometen Tempel 1 entdeckt. Die Forscher vermuten daher, dass die bei Kometen häufig beobachteten Helligkeitsausbrüche nicht von Meteoriteneinschlägen verursacht werden.

Originalveröffentlichung:

Michael Küppers, Ivano Bestini, Sonia Fornasier, Pedro J. Gutierrez, Stubbe F. Hviid, Laurent Jorda, Horst Uwe Keller, Jörg Knollenberg, Detlef Koschny, Rainer Kramm, Luisa-Maria Lara, Holger Sierks, Nicolas Thomas, Cesare Barbieri, Philippe Lamy, Hans Rickman, Rafael Rodrigo & the OSIRIS team
A large dust/ice ratio in the nucleus of comet 9P/Tempel 1
Nature, 13 October 2005

H. U. Keller, M. Küppers et. al.
Deep Impact Observations by OSIRIS Onboard the Rosetta Spacecraft
Science, 14 October 2005 (Science Express, 6 September 2005)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Einschlag Komet OSIRIS

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie