Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kometen eher "eisige Staubbälle" als "schmutzige Schneebälle"?

13.10.2005


Max-Planck-Forscher in Katlenburg-Lindau blicken mit den Kameras OSIRIS ins Innere des Kometen Tempel 1


Entwicklung des Kometenstaubs. Links ist das Bild des Kometen vor dem Einschlag zu sehen, rechts ein Bildausschnitt zehn Minuten vor dem Einschlag sowie 21 Stunden und 47 Stunden danach. Die projizierte Richtung zur Sonne ist nach oben, die Bewegungsrichtung des Kometen und des Projektils sind eingezeichnet. Bild: Max-Planck-Institut für Sonnensystemforschung


Entwicklung des Kometenstaubs. Bilder des Kometen vor dem Einschlag wurden von den Bildern subtrahiert, so dass nur die beim Einschlag erzeugte Wolke sichtbar ist. Die projizierte Richtung zur Sonne ist nach oben, v zeigt die Bewegungsrichtung des Kometen an. Bild: Max-Planck-Institut für Sonnensystemforschung und Laboratoire d’Astrophysique de Marseille



Als die NASA am 4. Juli 2005 ein Projektil in den Kometen Tempel 1 schoss, um Kometenmaterial in den Weltraum zu schleudern, da verfolgten Wissenschaftler das Ereignis unter anderem mit Hilfe der OSIRIS-Kameras an Bord der ESA-Kometensonde Rosetta, die unter Federführung des Max-Planck-Instituts für Sonnensystemforschung entwickelt worden waren. Die Kameras filmten den Kometen von fünf Tagen vor dem Einschlag bis zehn Tage nach dem Einschlag. Aus den OSIRIS-Messungen des Auswurfs schließen Forscher jetzt, dass der Komet mehr Staub als Wasser enthält (Nature, 13. Oktober 2005 und Science, 14. Oktober 2005).

... mehr zu:
»Einschlag »Komet »OSIRIS


Die Max-Planck-Forscher beobachteten die Folgen des Einschlags des 380 Kilogramm schweren Kupfer-Projektils, das mit einer Geschwindigkeit von 10 km/s in die Kometenoberfläche gerast war, und verglichen die Daten mit denen der normalen Koma - des "Schweifs" - des Kometen vor und nach dem Ereignis. Die Koma besteht vor allem aus Wasserdampf und Staub, die durch Sonneneinstrahlung von der Oberfläche des Kometen abgelöst werden. Das Eis geht dabei in den gasförmigen Zustand über, ohne zu verflüssigen; es "sublimiert". Die frei werdenden Moleküle werden schneller, reißen die Staubteilchen mit und beschleunigen sie zusätzlich.

Der Staub in der Koma ist sichtbar, da er das Sonnenlicht reflektiert. Der beim Einschlag freigesetzte Staub wurde mit der Telekamera (Narrow Angle Camera) von OSIRIS mit einer Auflösung am Kometen von 3000 Kilometer beobachtet.

In den Stunden und Tagen nach dem Einschlag zeigte sich der zusätzliche Staub durch einen Helligkeitszuwachs in der Koma des Kometen (s. Abb. 1). Es bildete sich zunächst eine Wolke, die aufgrund der Geometrie des Auswurfs aus dem Krater halbkreisförmig war. Später wurde der Staub durch den Strahlungsdruck der Sonne von der Sonne weg beschleunigt.

Aufgrund der Entfernung der Staubwolke vom Kern in verschiedenen Bildern kann man die Geschwindigkeit des Staubs abschätzen: Die Staubteilchen entfernten sich mit einer typischen Geschwindigkeit von ca. 110 m/s vom Kern, die schnellsten Teilchen mit mindestens 300 m/s.

Der Anstieg der Helligkeit durch den beim Einschlag erzeugten Staub dauerte ungefähr 40 Minuten (s. Abb. 3). Es wird vermutet, dass ein Großteil des Materials den Kometenkern beim Einschlag als eishaltige Staubkörner (icy grains) verlassen hat. Danach waren die einzelnen Körner dem Sonnenlicht ausgesetzt und sublimierten. Der Staub in den Körnern zerbröselte bei diesem Prozess. Mehr Staub hat eine größere Oberfläche und reflektiert so mehr Sonnenlicht; so steigt die Helligkeit an.

Die Wassermoleküle (H2O) werden durch die ultraviolette Strahlung der Sonne zerlegt, größtenteils in OH + H. Die OH-Radikale fluoreszieren und konnten daher mit der Weitwinkelkamera (wide angle camera) von OSIRIS gemessen werden. Daraus wurde die beim Einschlag erzeugte Menge von Wasser berechnet. Sie ist mit 4.500 Tonnen deutlich geringer als die geschätzte Gesamtmasse der Staubteilchen, die aus der Helligkeit des Staubes bestimmt wird. Die Forscher vermuten daher, dass die Vorstellung vom Kometen als einem "schmutzigen Schneeball" aus den 1950er Jahren wohl korrigiert werden sollte - Tempel 1 hat sich eher als "eisiger Staubball" entpuppt.

Die Kameras gaben noch weiteren Einblick ins Innere des Kometen: Das Molekül-Radikal CN kommt im Auswurf des Einschlags relativ zum Wasser etwas häufiger vor als in der normalen Koma vor und nach dem Einschlag. Daraus lässt sich schließen, dass es sich das Innere des Kometenkerns chemisch anders zusammensetzt als seine Oberfläche. Und: In den Stunden und Tagen nach dem Einschlag wurde keine erhöhte Aktivität des Kometen Tempel 1 entdeckt. Die Forscher vermuten daher, dass die bei Kometen häufig beobachteten Helligkeitsausbrüche nicht von Meteoriteneinschlägen verursacht werden.

Originalveröffentlichung:

Michael Küppers, Ivano Bestini, Sonia Fornasier, Pedro J. Gutierrez, Stubbe F. Hviid, Laurent Jorda, Horst Uwe Keller, Jörg Knollenberg, Detlef Koschny, Rainer Kramm, Luisa-Maria Lara, Holger Sierks, Nicolas Thomas, Cesare Barbieri, Philippe Lamy, Hans Rickman, Rafael Rodrigo & the OSIRIS team
A large dust/ice ratio in the nucleus of comet 9P/Tempel 1
Nature, 13 October 2005

H. U. Keller, M. Küppers et. al.
Deep Impact Observations by OSIRIS Onboard the Rosetta Spacecraft
Science, 14 October 2005 (Science Express, 6 September 2005)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Einschlag Komet OSIRIS

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie