Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarze Löcher auf Kollisionskurs

13.09.2001


Nach dem Zusammenprall zweier Schwarzer Löcher rasen die Gravitationswellen auf die Erde zu (Computersimulation). Die Wellen entstehen nahe dem Zentrum der Kollision, breiten sich schalenartig aus und verlassen letztendlich den Würfel, der die Computervisualisierung begrenzt.
Visualisierung: W. Benger (Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut, AEI))


Computersimulationen am Max-Planck-Institut für Gravitationsphysik zeigen erstmals, was Gravitationswellen-Detektoren bei der Kollision Schwarzer Löcher messen werden.

Die Verschmelzung zweier Schwarzer Löcher ist eines der seltsamsten Ereignisse, für das sich die moderne Astronomie interessiert. Auf den größten Computern der Welt zeigen Physiker jetzt, wonach Astronomen mit ihren Detektoren suchen müssen und bringen so die ersten Beobachtungen von Gravitationswellen in greifbare Nähe. In einem Artikel in Physical Review Letters vom 17. September 2001, berechnet ein Team junger Wissenschaftler vom Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut (AEI) in Golm bei Potsdam) die Form der Gravitationswellen, die abgestrahlt werden, wenn Schwarze Löcher zusammenstoßen und verschmelzen. Mitarbeiter des Teams sind John Baker (jetzt am NASA Goddard Space Flight Center in den USA), Bernd Brügmann, Manuela Campanelli, Carlos Lousto und Ryoji Takahashi. Sie haben sich selbst den Namen "Lazarus Team" gegeben.

Das wichtigste Ergebnis der Lazarus-Simulationen besteht darin, dass die Gravitationswellen-Astronomen nun wissen, nach welchen Signalformen sie in den Daten ihrer Detektoren suchen müssen. Die Vorhersagen der Lazarus-Simulationen sind genauer und verlässlicher als alle vorhergehenden Berechnungen. Die Lazarus-Wissenschaftler gehen davon aus, dass Gravitationswellen deutlich stärker sind als bislang vermutet.

Bernard Schutz, Direktor am Max-Planck-Institut für Gravitationsphysik, stellt fest: "Der Erfolg des Lazarus-Projekts am AEI stellt sich gerade zum richtigen Zeitpunkt ein. Anhand von Zusammenstößen Schwarzer Löcher können wir womöglich erstmals Gravitationswellen detektieren - das wäre ein Meilenstein für Einsteins Allgemeine Relativitätstheorie. Numerisch berechnete Gravitationswellenformen werden uns nicht nur helfen, die Wellen solcher Ereignisse zu messen und zu erkennen, sondern sie erlauben uns auch, aus den Messergebnissen Rückschlüsse auf die Massen der Schwarzen Löcher und ihre Entfernung von der Erde zu ziehen. Beim Zusammenstoß Schwarzer Löcher werden weder Licht, noch Radiowellen oder Röntgenwellen abgestrahlt. Wir können diese Ereignisse nur sehen, wenn wir die entstehenden Gravitationswellen messen können."

Frühere Simulationen konnten nicht den gesamten Verschmelzungsprozess zeigen. Im Innern eines Schwarzen Loches lauert eine "Singularität", eine Stelle, an der die Schwerkraft immens groß wird. Computersimulationen hatten bislang große Schwierigkeiten, gleichzeitig die abgestrahlten Wellen und das Innere des Schwarzen Loches zu modellieren.

Der entscheidende Fortschritt des Lazarus-Teams am AEI stellte sich ein, als zwei Methoden miteinander kombiniert wurden: die volle Numerische Simulation für den Zusammenstoß und eine Näherungsmethode aus der Störungstheorie zur Berechnung der Strahlung, die von dem entstehenden Schwarzen Loch abgegeben wird. Die Simulation des Zusammenpralls wird daher beendet, bevor der Code zusammenbricht. Für den weiteren Prozess wird eine Methode verwendet, die die Gravitationswellen außerhalb des resultierenden Schwarzen Loches beschreibt. Auch diese Berechnungen werden mit Computern durchgeführt, aber so werden die Simulationsprobleme vermieden, die auftreten, wenn man in das Innere Schwarzer Löcher hineinrechnet.

Originalarbeit: Plunge Waveforms from Inspiralling Binary Black Holes J. Baker, B. Brügmann, M. Campanelli, C. O. Lousto, and R. Takahashi Physical Review Letters 17 September 2001 (Published 31 August 2001)

Dr. Bernd Brügmann | Presseinformation

Weitere Berichte zu: AEI Gravitationsphysik Gravitationswell Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie