Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationalem Forscherteam mit Freiburger Physikern gelingt Nachweis von Doppelt-Strange-Atomkernen

13.09.2001


Einer internationalen Kollaboration am Brookhaven National Laboratory (BNL) bei New York, der neben japanischen, amerikanischen und kanadischen Physikern auch Wissenschaftler der Fakultät für Physik der Universität Freiburg angehören, gelang erstmals die Produktion einer größeren Anzahl von doppelt-strange Atomkernen. Diese exotischen Atomkerne, oft auch Doppel-Lambda-Kerne genannt, enthalten neben den üblichen Kernbausteinen, den Protonen und den Neutronen (Nukleonen), zusätzlich zwei Lambda-Teilchen.

Im vorliegenden Experiment wurde nun erstmals ein gebundener Zustand aus zwei Lambdas, einem Proton und einem Neutron nachgewiesen. Solche exotischen Atomkerne, die man als überschwere doppelt-strange Wasserstoffkerne bezeichnen könnte, sind wichtige Studienobjekte zur genaueren Erforschung der Kernkräfte und der Kräfte zwischen Lambdas und zwischen Lambdas und Nukleonen. Es wird vermutet, dass solche s-Quarks enthaltenden Kerne unter extremen Bedingungen stabil sein könnten, Bedingungen, wie sie etwa im Inneren von Neutronensternen herrschen. Auch im sehr frühen Stadium der Entstehung des Kosmos könnten solche exotischen Systeme eine entscheidende Rolle gespielt haben. Ihr Studium ist Voraussetzung für die Simulation solcher kosmologischer Szenarien.

Die Schwierigkeit des technologisch sehr anspruchsvollen Experimentes besteht darin, unter Verwendung ausgefeilter Computertechniken aus etwa 100 Millionen registrierten Ereignissen die 30 - 40 Fälle herauszufinden, wo mit an Sicherheit grenzender Wahrscheinlichkeit ein doppelt-strange Kern gebildet wurde. Der experimentelle Aufbau umfasst auch ein aufwendiges Magnetspektrometer, dessen rückwärtiger Teil zwei großflächige Driftkammern (ostsempfindliche Nachweisgeräte) enthält, die in Freiburg gebaut, und von den Freiburger Mitarbeitern in das Experiment integriert wurden.

Aus den vorliegenden Ergebnissen lässt sich bereits schließen, dass die Wechselwirkung zwischen zwei Lambdas ziemlich schwach ist, was wahrscheinlich der Grund dafür ist, dass keine H-Teilchen gefunden wurden.

Aus den vorliegenden Ergebnissen lässt sich bereits schließen, dass die Wechselwirkung zwischen zwei Lambdas ziemlich schwach ist. Das ist wahrscheinlich der Grund dafür, dass in früheren Experimenten am BNL, an denen ebenfalls Freiburg beteiligt war, keine nur aus zwei Lambdas bestehenden Teilchen (H-Teilchen) nachgewiesen wurden: Die attraktive Kraft zwischen zwei Lambdas reicht nicht für eine Bindung. Nur im Verbund mit weiteren Nukleonen ist ein Zwei-Lambda-Zustand möglich.

Eine Fortführung der Experimente wird es erlauben, Bindungsenergien und Wechselwirkungen der Lambdas genauer zu untersuchen und daraus neue Informationen über den Aufbau der Kernbestandteile aus Quarks zu gewinnen.


Kontakt:

Dr. Horst Fischer

... mehr zu:
»Atomkern »Nukleon »Wechselwirkung

Dr. Jürgen Franz,
Prof. Dr. Hans Schmitt
Fakultät für Physik der Universität Freiburg

Hermann-Herder-Strasse 3
79104 Freiburg
Tel. 0761-203 5877
Fax0761-203 5705
E-Mail hschmitt@uni-freiburg.de

Rudolf-Werner Dreier | idw

Weitere Berichte zu: Atomkern Nukleon Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spiralarme nicht nur in Galaxien
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Rosetta-Team verabschiedet sich mit neuem Kometen-Sound
30.09.2016 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: Zielsichere Roboter im Mikromaßstab

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für...

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart Glasses Experience Day

30.09.2016 | Veranstaltungen

Einzug von Industrie 4.0 und Digitalisierung im Südwesten - Innovationstag der SmartFactoryKL

30.09.2016 | Veranstaltungen

"Physics of Cancer" - Forscher diskutieren über biomechanische Eigenschaften von Krebszellen

30.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Smart Glasses Experience Day

30.09.2016 | Veranstaltungsnachrichten

Materialkompetenz für den Leichtbau: Fraunhofer IMWS präsentiert neue Lösungen auf der K-Messe

30.09.2016 | Messenachrichten

Vom Rollstuhl auf das Liegerad – Mit Funktioneller Elektrostimulation zum Cybathlon

30.09.2016 | Energie und Elektrotechnik