Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1,4 Millionen Grad heißes Plasma umgibt die Milchstraße

05.09.2005


Die Verteilung des Wasserstoffgases in der Milchstraße. In der Mitte das Zentrum, hohe Intensitäten in der galaktischen Ebene sind rot, Regionen mit weniger Gas an den Polen sind blau abgebildet. (c) RAIUB


Knapp 150 Jahre nach der "Bonner Durchmusterung" des nördlichen Sternenhimmels durch Friedrich Wilhelm Argelander kommt nun ein weiteres astronomisches Mammutprojekt unter Bonner Federführung zum Abschluss: 1986 hatten Astronomen aus Leiden die Idee, den vollständigen Nordhimmel nach Anzeichen von Wasserstoff zu durchsuchen, und baten ihre Kollegen vom Institut für Radioastronomie der Universität Bonn um Mithilfe. Seit 1994 beobachten die Forscher zusätzlich in Argentinien, um auch den Südhimmel zu erfassen. Das Ergebnis schafft es nun sogar auf den Titel der Fachzeitschrift Astronomy & Astrophysics: Die erste Karte, auf der die Wasserstoffwolken in der Milchstraße lückenlos und fehlerfrei erfasst sind.


Wasserstoff ist gewissermaßen die "Urmaterie" unseres Universums: Es ist das erste Element, das nach dem Urknall entstand. Obwohl das häufigste Element im Weltraum, ist das durchsichtige Gas nur schwierig nachzuweisen. Wasserstoff ist aber ein Radiosender: Er strahlt Radiowellen mit 21 cm Wellenlänge aus, die sich auf der Erde durch große Parabolantennen auffangen lassen. Im Radiospektrum bilden sie die berühmte "21cm-Linie des Wasserstoffs".

"Für uns ist die 21cm-Linie unter anderem deshalb so interessant, weil sie Aufschluss über die Verteilung und Bewegung des interstellaren Mediums gibt", erklärt Dr. Peter Kalberla vom Radioastronomischen Institut der Universität Bonn (RAIUB). Möglich wird das durch die so genannte Dopplerverschiebung: Ähnlich wie die Sirene eines Polizeiwagens heller klingt, wenn er auf den Beobachter zufährt, sendet auch "Radio Wasserstoff" auf höherer Frequenz, wenn sich die Wolke auf den Empfänger zubewegt. Dadurch verschiebt sich die Wasserstofflinie zu etwas kürzeren Wellenlängen, also in Richtung 20 Zentimeter.


1,4 Millionen Grad heißes Plasma

Indirekt lässt sich mit dem Doppler-Effekt sogar die Temperatur des interstellaren Mediums messen: Wie bei einem Gewitter auf der Erde herrschen in heißen Wasserstoff-Wolken sehr turbulente Bedingungen. Es bilden sich Wirbel, in denen sich Teile des Gases auf die Erde zubewegen, während gleichzeitig andere Teile von ihr wegströmen. Dadurch sendet der Wasserstoff auf verschiedenen Wellenlängen; die - eigentlich scharfe - 21cm-Linie "fließt" auseinander. Je heißer die Wolke, desto mehr Turbulenzen und desto "breiter" das Wasserstoff-Signal, das dann aus vielen einzelnen filigranen Linien besteht.

Mit Hilfe der neuen Daten konnten die RAIUB-Astronomen bereits zeigen, dass die Milchstraße in ein ausgedehntes 1,4 Millionen Grad heißes Plasma eingebettet ist - ganz analog zur Sonnenkorona. In diesem Plasma aus ionisiertem Wasserstoff "schwimmen" kleine Flocken aus neutralem Wasserstoff, die sich im Radiobild bemerkbar machen.

"Wir haben erstmals den kompletten Nord- und Südhimmel nach der 21-cm-Linie durchmustert", erklärt Dr. Kalberla. Dazu nutzten die Forscher neben dem 25-Meter-Radioteleskop im niederländischen Dwingeloo seit 1994 auch ein 30-Meter-Teleskop in Argentinien. "Was den Datensatz besonders wertvoll macht, ist seine hohe Messempfindlichkeit. Zudem konnten wir durch ein spezielles Rechenverfahren die Bildfehler, die bei Radioteleskopen unvermeidbar auftreten, um den Faktor 30 reduzieren." Dadurch können die Daten in den nächsten Jahren auch als Referenzwerte für größere Teleskope dienen, beispielsweise das 100-Meter-Teleskop in Effelsberg. Das liefert zwar detailreichere Aufnahmen, hat aber gleichzeitig systematische Bildfehler, die mit Hilfe des neuen Datensatzes erkannt und korrigiert werden können.

Auch das deutsch-niederländisch-argentinische Team hatte bei seinem Mammutprojekt mit unerwarteten Fehlern zu kämpfen. "Manche Geräte, mit denen wir arbeiteten, sendeten selbst Radiowellen aus und führten dadurch zu unerwarteten Störungen in den Teleskopbildern", erinnert sich Peter Kalberla. "Irgendwann einmal haben wir in einer ’Nacht der langen Messer’ nach und nach jeden Computer und jede einzelne Webcam abgeschaltet, bis die Störungen endlich aufhörten." Nur die Teleskopsteuerung blieb übrig.

Unter der Adresse http://www.astro.uni-bonn.de/~webrai/german/tools_labsurvey.php kann man jeden einzelnen Punkt des Himmels anpeilen und sich die Wasserstoff-Linie anzeigen lassen.

Kontakt:
Dr. Peter Kalberla
Radioastronomisches Institut der Universität Bonn
Telefon: 0228/73-5769
E-Mail: pkalberla@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/
http://www.astro.uni-bonn.de/~webrai/german/tools_labsurvey.php

Weitere Berichte zu: Kalberla Milchstraße Plasma Wasserstoff

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen