Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Bewegung von Quanten-Teilchen sichtbar gemacht

30.08.2005


Heidelberger Max-Planck-Wissenschaftler "filmen" und beeinflussen das Zerbrechen von Wasserstoffmolekülen


Abb. 1: Die gemessene kinetische Energieverteilung der Protonen, aufgetragen gegenüber der Zeitdifferenz zwischen dem ersten und dem zweiten Laserpuls. Im abfallenden Energieband (hellblau bis grün) erkennt man zwei Wege, die das Wasserstoffmolekül nach der Ionisation durch den ersten (Pump-)Laserpuls nehmen kann. Diese zwei Wege sind nur in Anwesenheit eines intensiven Laserfeldes vorhanden. Das Molekül kann dann entweder durch die Nettoabsorption eines Photons (1ω) oder zweier Photonen (2ω) zerfallen. Mit Hilfe des zweiten, zeitlich verzögerten (Probe-) Laserpulses wird gemessen, welchen Weg das Molekül genommen hat. Bild: Max-Planck-Institut für Kernphysik / T. Ergler


Abb. 2: Anhand der kinetischen Energie der Atomkerne lassen sich die unterschiedlichen quantenmechanischen Wege 1 ω und 2 ω unterscheiden. Hat das Proton eine Endzustandsenergie von etwa 0,7 eV, so entspricht dies einer Dissoziation des Moleküls entlang des Weges 2 ω (z.B. schwarz umrandeter Bereich), wohingegen Energien von etwa 0,3 eV einen Aufbruch entlang des Weges 1 ω bedeutet (z.B. weiß umrandeter Bereich). Die Interferenz des Laserlichtfeldes führt zu einer Modulation der Laserpulse und entscheidet darüber, welchen Weg das Molekül einschlägt. Bild: Max-Planck-Institut für Kernphysik / T. Ergler



Wie zerbricht ein Wasserstoffmolekül in intensivem Laserlicht? Forschern des Max-Planck-Instituts für Kernphysik in Heidelberg ist es jetzt gelungen, verschiedene Quantenwege, die zum Zerplatzen eines Wasserstoffmoleküls führen, auf einer bisher nicht zugänglichen kurzen Zeitskala zu visualisieren. Durch die Form der Laserpulse gelang es ihnen außerdem, die Moleküle auf bestimmte Quantenpfade zu zwingen - erste Schritte auf dem Weg zur gezielten Manipulation chemischer Reaktionen komplexer Moleküle (Physical Review Letters, 30. August 2005).



Während in der klassischen Physik Ort und Geschwindigkeit eines Teilchens exakt bekannt sind, sind in der Welt der Quanten nur Wahrscheinlichkeitsaussagen möglich. Ein bestimmter Aufenthaltsort oder der Weg von Elektronen oder Atombausteinen ist nur mit einer gewissen Gewissheit festgelegt. Seit der Entwicklung der Quantenmechanik ist es ein alter Traum, die Aufenthaltswahrscheinlichkeiten direkt zu messen und ihre zeitliche Entwicklung zu verfolgen. Das Ziel ist, die Dynamik quantenmechanischer Systeme direkt sichtbar zu machen - zum Beispiel bei chemischen Reaktionen, die nichts anderes als quantendynamische Prozesse sind. Dahinter steckt die Hoffnung und Vision der Wissenschaftler, beispielsweise das Entstehen spezifischer chemischer Bindungen zu manipulieren und zu kontrollieren. Bei einer solchen Manipulation wird aus einer Vielzahl quantenmechanischer Wege, die zu einem bestimmten Ziel - dem gewünschten chemischen Bindungszustand - führen, ein bestimmter ausgewählt.

Das ist Forschern des Max-Planck-Institutes für Kernphysik in Heidelberg nun bei einer der einfachsten chemischen Reaktionen gelungen: der "Dissoziation" von Wasserstoffmolekülen in intensiven Laserfeldern. Dabei zerfällt ein Wasserstoffmolekül, das aus zwei Wasserstoffatomen besteht, in seine Bestandteile. Die Wissenschaftler visualisierten diesen Prozess auf einer bisher nicht zugänglich kurzen Zeitskala und bildeten dabei unterschiedliche Wege des Dissoziationsvorgangs ab. Durch gezielte Formung der Laserpulse erreichten sie es, dass das Molekül den einen oder anderen Weg bevorzugte; sie manipulierten so die Dissoziation.

Pump-Probe-Technik mit extrem kurzen Laserpulsen

Für die Festlegung von Anfangs- und Endzustand des Moleküls sowie die Kontrolle der Wege dazwischen verwendeten die Forscher die so genannte Pump-Probe-Technik mit zwei zeitlich gegeneinander verzögerten, extrem kurzen Laserpulsen. Diese Lichtpulse sind gleichzeitig so intensiv, dass sie Elektronen aus dem Molekül entfernen können. Die Pump-Probe-Technik mit relativ "langen" und "schwachen" Laserpulsen ist zur Beobachtung von Quantenwegen weit verbreitet. Doch für die Abbildung der zeitlichen Entwicklung der Aufenthaltswahrscheinlichkeiten ultra-schneller Prozesse benötigt man sehr kurze Laserpulse, so, wie man schnelle Bewegungen nur mit kurzer Belichtungszeit scharf fotografieren kann. Am Max-Planck-Institut verwendete man daher für die Experimente eine mittlere Laserpulsdauer von 25 Femtosekunden (1 fs = 10-15 Sekunden). Licht, das in einer Sekunde etwa achtmal die Erde umrunden kann, legt in dieser Zeit lediglich eine Strecke von etwa 10 Mikrometern zurück.

Das Experiment

Ausgangspunkt der Messung ist molekularer Wasserstoff H2, dessen Moleküle nicht energetisch angeregt sind; sie bilden "Wellenpakete im Grundzustand". Mit einem ersten (Pump-)Laserpuls wird einem einzelnen H2-Molekül ein Elektron entrissen, es wird sehr schnell ionisiert (Pfeil "Pump" in Abb. 1). Da die negativ geladenen Elektronen die beiden positiven Kerne des Moleküls binden und nun eines fehlt, wird dadurch die Bindung schwächer und der Gleichgewichtsabstand der beiden Kerne vergrößert sich, angedeutet in Abb. 1 durch die blaue H2+-Potentialkurve mit dem neuen Minimum bei größerem Kernabstand R.

Das einfach ionisierte H2+-Molekül versucht nun sich dieser neuen Situation anzupassen; seine beiden Kerne laufen auf diese neue Position zu. Ohne Laserlicht würden die beiden Kerne um diese neue Ruhelage herum schwingen, das Wellenpaket würde oszillieren. Doch in Anwesenheit des Laserlichtes kann das Wellenpaket netto ein oder zwei Photonen aufnehmen und entlang zweier unterschiedlicher Wege (1 ω bzw. 2 ω) dissoziieren.

Welchen Weg das Molekül dabei nimmt, beobachteten die Wissenschaftler mit Hilfe eines sogenannten "Reaktionsmikroskops", das eine "hochauflösende Multikoinzidenzspektroskopie" ermöglicht und vor zehn Jahren in den Gruppen von Prof. Joachim Ullrich und Prof. Horst Schmidt-Böcking (Universität Frankfurt) sowie von Prof. L. Cocke (Kansas State University) entwickelt wurde. Die Wissenschaftler entrissen nach dem ersten Ionisationsschritt durch den Pump-Laserpuls mit einem zweiten Laserpuls dem Molekül auch das zweite Elektron ("Probe"). Weil sich die beiden positiv geladenen Kerne abstoßen, explodiert danach der Rest des Moleküls. Mit Hilfe des Reaktionsmikroskops kann nun der Impuls der Bruchstücke - und somit deren Energie - in allen drei Raumrichtungen gemessen werden. Damit lassen sich auf einer sehr kurzen Zeitskala Aussagen über die Moleküldynamik treffen.

Durch die Veränderung des zeitlichen Abstandes der Laserpulse modifizierten die Forscher dabei unter anderem die Form der Pulse, was zu einer Manipulation der Dissoziationswege führte. Je nach zeitlichem Abstand überlagern sich die Pulse konstruktiv oder destruktiv - Lichtwellen verstärken sich oder löschen sich aus. Dadurch bricht das Moleküls entlang des einen oder anderen Weges auseinander (schwarze und weiße Markierung in Abb. 2).

Um noch tiefere Einblicke in die Quantendynamik des Wasserstoffmoleküls zu erhalten, ist eine weitere Reduzierung der "Belichtungszeit" notwendig. Derzeit arbeiten die Forscher bereits an einem Experiment mit intensiven Laserpulsen von nur sechs Femtosekunden Dauer, in dem selbst die Dynamik gebundener Zustände aufgelöst werden soll. Diese Methode laserbasierter Visualisierung quantenmechanischer Dynamik soll in Zukunft auch auf komplexere Molekülstrukturen angewandt werden, mit dem Ziel den Ablauf unterschiedlicher physikalischer, chemischer und biologischer Prozesse eingehender studieren und verstehen zu können.

Originalveröffentlichung:

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C.D. Schröter, R. Moshammer and J. Ullrich - Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields - Physical Review Letters, Volume 95, to be published on 2 September 2005 (online 30 August 2005)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Elektron Laserpuls Molekül Wasserstoffmolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise