Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Rätsel kosmischer Gammablitze auf der Spur

24.08.2005


Münchner Max-Planck-Forschern gelingt erste Hochenergie-Beobachtung eines Gammastrahlen-Ausbruchs


MAGIC, das "Major Atmospheric Gamma Imaging Cherenkov"-Teleskop. Das mit einem Spiegeldurchmesser von 17 Metern weltweit größte Teleskop seiner Art untersucht die Gamma-Strahlung ferner Galaxien und explodierender Sterne. Bild: Robert Wagner, Max-Planck-Institut für Physik


Das Laser-Kalibrationssystem des MAGIC-Teleskops, mit dessen Hilfe die Segmente des 17 Meter-Spiegels nachjustiert werden. Dadurch bleibt die hohe Abbildungsqualität auch nach schnellen Dreh- und Schwenkbewegungen gewährleistet. Bild: Robert Wagner, Max-Planck-Institut für Physik



Einen Gamma Ray Burst noch während der Explosionsphase zu beobachten ist jetzt erstmals einer internationalen Wissenschaftlergruppe um Prof. Masahiro Teshima vom Münchner Max-Planck-Institut für Physik mit MAGIC, dem weltweit größten Gammastrahlen-Teleskop auf La Palma/Spanien, gelungen. Am frühen Morgen des 13. Juli 2005 konnten die Astronomen bereits 40 Sekunden nach der Explosion und nur 20 Sekunden, nachdem der Ausbruch GRB050713a vom Satelliten SWIFT gemeldet worden war, das Teleskop auf die gemeldete Position ausrichten und den Ausbruch messen. Damit liegen zum ersten Mal gleichzeitig durchgeführte Messungen der Gamma-Emission in stark unterschiedlichen Spektralbereichen vor, nämlich von SWIFT im Röntgenlicht und von MAGIC im extrem harten Gamma-Licht (E > 175 GeV). Die Beobachtungsergebnisse wurden auf der 29. Internationalen Cosmic Ray Konferenz vorgestellt, die vom 3. bis 10. August 2005 in Puna (Indien) stattgefunden hat.

... mehr zu:
»MAGIC »Strahlung


Beobachtungen im Gammastrahlen-Bereich des elektromagnetischen Spektrums öffnen ein neues Fenster in der langen Geschichte der Astronomie. Da die Erdatmosphäre für dieses extrem energiereiche Licht undurchlässig ist, erfordern direkte Beobachtungen den Einsatz von Satelliten oder Raketen. Sie können allerdings nur Gammastrahlung bis zu Energien von maximal einigen zehn Milliarden Elektronenvolt registrieren. Für höhere Energien müssen sich die Astronomen mit einem Trick behelfen, der es erlaubt, Gammaquanten auch mit erdgebundenen Detektoren nachzuweisen.

Dazu nutzen die Forscher die Tatsache, dass sich ein hochenergetisches Gammateilchen in den oberen Schichten der Atmosphäre beim Vorbeiflug an einem Atomkern spontan in ein Elektron und in dessen Antiteilchen, ein Positron, umwandeln kann. Beide Teilchen erzeugen wiederum in einer Art Schneeballsystem weitere Sekundär-Teilchen - eine Teilchenlawine, ein so genannter "Luftschauer", entsteht. Die elektrisch geladenen Teilchen des Schauers, deren Geschwindigkeit höher ist als die Lichtgeschwindigkeit in Luft, emittieren Cherenkov-Licht. Als Cherenkov-Strahlung bezeichnet man eine elektromagnetische Strahlung, die von schnellen elektrischen Teilchen in elektrisch nicht leitenden Medien erzeugt wird, wenn ihre Geschwindigkeit größer ist als die Geschwindigkeit der Strahlung in diesem Medium. Die 1934 von P. A. Cherenkov entdeckte Strahlung breitet sich annähernd in Flugrichtung des ursprünglichen Gammateilchens aus und beleuchtet auf der Erdoberfläche für wenige Milliardstel Sekunden eine Fläche von einigen hundert Metern Durchmesser.

Das Potenzial von MAGIC beruht auf dem konzertierten Einsatz neuester Technologien in den zentralen Komponenten des Teleskops, die eine effizientere Lichtsammlung ermöglichen. So war Leichtbau bei allen bewegten Teilen Voraussetzung dafür, einen Spiegeldurchmesser von 17 Metern realisieren zu können, ohne dabei Kompromisse bei der Positionierungsgeschwindigkeit eingehen zu müssen. Dies ist wichtig für die Beobachtung kurzzeitiger Phänomene wie Gamma Ray Bursts. Erstmals bei einem Cherenkov-Teleskop wird eine ultraleichte Kohlefaser-Gitterrahmenstruktur als Spiegelträger eingesetzt. Auch die 934 Spiegelsegmente bestehen aus Gewichtsgründen nicht aus Glas, sondern aus Aluminium, dessen Oberfläche mit diamantbestückten Werkzeugen geschliffen wurde. Die Spiegelsegmente selbst sind mit einem computergesteuerten Verstellmechanismus ausgestattet, sodass kleinste Verformungen des Spiegelträgers, wie sie bei Lageänderungen auftreten, automatisch korrigiert werden können. Auf diese Weise bleibt die optische Qualität des Teleskops unabhängig von der Positionierungsrichtung stets gewährleistet.

Die vom Spiegel gesammelten Photonen werden auf eine aus 577 Lichtsensoren bestehende elektronische Kamera fokussiert, die im Brennpunkt des Teleskops angebracht ist und ultrakurze Belichtungszeiten von wenigen Milliardstel Sekunden erlaubt. Für die Kamera nutzt man speziell entwickelte Photomultiplier-Röhren, deren spektrale Empfindlichkeit an das zu beobachtende Cherenkov-Licht angepasst ist. Der Signaltransfer geschieht über ein ultraschnelles optisches Glasfaser-System, das eine nahezu verlustfreie Analog-Übertragung der in der Kamera erzeugten Impulse ermöglicht. Auf diese Weise kann in der Kamera selbst auf schwere Digitalisierungselektronik verzichtet und die Beeinträchtigung durch ein mechanisches Nachschwingen des Kameragehäuses minimiert werden.

Die durch konsequente Nutzung technologischer Neuentwicklungen erreichte Empfindlichkeit und schnelle Positionierbarkeit machen MAGIC zu einem weltweit einzigartigen Instrument für die Beobachtung von Gamma Ray Bursts und anderer bisher weitgehend ungeklärter astrophysikalischer Prozesse. Mit MAGIC ist es möglich, bis zu 8 Milliarden Lichtjahre weit ins Universum zu schauen. Wichtige Objekte des Beobachtungsprogramms sind dabei einige der rätselhaftesten und exotischsten Himmelskörper: Quasare und andere aktive Zentren von Galaxien, Schwarze Löcher, Pulsare und die Überreste von Supernovae, jenen gewaltigen Explosionen, die dem Lebenszyklus massereicher Sterne ein Ende setzen.

Die wissenschaftlichen Fragestellungen, auf die sich die Physiker dabei Antworten erhoffen, zählen zu den Brennpunkten der modernen Grundlagenforschung. Dazu gehören etwa die Frage, welche Mechanismen die Teilchen der kosmischen Strahlung auf die enormen Energien beschleunigen, aber auch ein besseres Verständnis der Prozesse, die zur Bildung der ältesten Objekte im Kosmos geführt haben, oder die Untersuchung der infraroten Hintergrundstrahlung im Universum und die Überprüfung des Gültigkeitsbereichs der speziellen Relativitätstheorie sowie die Suche nach Effekten der Quantengravitation. Auch die rätselhafte Dunkle Materie, die das Universum erfüllt und über deren Natur bisher nur wenig bekannt ist, könnte für MAGIC beobachtbare Spuren hinterlassen.

Das Teleskop wurde unter Federführung des Münchner Max-Planck-Instituts für Physik in den Jahren 2001 bis 2003 gebaut und seither in internationaler Kooperation betrieben. Rund 150 Wissenschaftler aus 14 Ländern beteiligen sich an dem Projekt. Deutschland ist durch das Max-Planck-Institut für Physik in München, die Humboldt-Universität Berlin sowie die Universitäten Dortmund und Würzburg vertreten.

MAGIC wird derzeit durch ein zweites, weitgehend baugleiches Teleskop ergänzt. Dies ermöglicht dann auch stereoskopische Beobachtungen von Luftschauern, was die Empfindlichkeit des Instruments noch weiter erhöhen wird.

Prof. Dr. Masahiro Teshima | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mppmu.mpg.de
http://www.mpg.de

Weitere Berichte zu: MAGIC Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen