Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Rätsel kosmischer Gammablitze auf der Spur

24.08.2005


Münchner Max-Planck-Forschern gelingt erste Hochenergie-Beobachtung eines Gammastrahlen-Ausbruchs


MAGIC, das "Major Atmospheric Gamma Imaging Cherenkov"-Teleskop. Das mit einem Spiegeldurchmesser von 17 Metern weltweit größte Teleskop seiner Art untersucht die Gamma-Strahlung ferner Galaxien und explodierender Sterne. Bild: Robert Wagner, Max-Planck-Institut für Physik


Das Laser-Kalibrationssystem des MAGIC-Teleskops, mit dessen Hilfe die Segmente des 17 Meter-Spiegels nachjustiert werden. Dadurch bleibt die hohe Abbildungsqualität auch nach schnellen Dreh- und Schwenkbewegungen gewährleistet. Bild: Robert Wagner, Max-Planck-Institut für Physik



Einen Gamma Ray Burst noch während der Explosionsphase zu beobachten ist jetzt erstmals einer internationalen Wissenschaftlergruppe um Prof. Masahiro Teshima vom Münchner Max-Planck-Institut für Physik mit MAGIC, dem weltweit größten Gammastrahlen-Teleskop auf La Palma/Spanien, gelungen. Am frühen Morgen des 13. Juli 2005 konnten die Astronomen bereits 40 Sekunden nach der Explosion und nur 20 Sekunden, nachdem der Ausbruch GRB050713a vom Satelliten SWIFT gemeldet worden war, das Teleskop auf die gemeldete Position ausrichten und den Ausbruch messen. Damit liegen zum ersten Mal gleichzeitig durchgeführte Messungen der Gamma-Emission in stark unterschiedlichen Spektralbereichen vor, nämlich von SWIFT im Röntgenlicht und von MAGIC im extrem harten Gamma-Licht (E > 175 GeV). Die Beobachtungsergebnisse wurden auf der 29. Internationalen Cosmic Ray Konferenz vorgestellt, die vom 3. bis 10. August 2005 in Puna (Indien) stattgefunden hat.

... mehr zu:
»MAGIC »Strahlung


Beobachtungen im Gammastrahlen-Bereich des elektromagnetischen Spektrums öffnen ein neues Fenster in der langen Geschichte der Astronomie. Da die Erdatmosphäre für dieses extrem energiereiche Licht undurchlässig ist, erfordern direkte Beobachtungen den Einsatz von Satelliten oder Raketen. Sie können allerdings nur Gammastrahlung bis zu Energien von maximal einigen zehn Milliarden Elektronenvolt registrieren. Für höhere Energien müssen sich die Astronomen mit einem Trick behelfen, der es erlaubt, Gammaquanten auch mit erdgebundenen Detektoren nachzuweisen.

Dazu nutzen die Forscher die Tatsache, dass sich ein hochenergetisches Gammateilchen in den oberen Schichten der Atmosphäre beim Vorbeiflug an einem Atomkern spontan in ein Elektron und in dessen Antiteilchen, ein Positron, umwandeln kann. Beide Teilchen erzeugen wiederum in einer Art Schneeballsystem weitere Sekundär-Teilchen - eine Teilchenlawine, ein so genannter "Luftschauer", entsteht. Die elektrisch geladenen Teilchen des Schauers, deren Geschwindigkeit höher ist als die Lichtgeschwindigkeit in Luft, emittieren Cherenkov-Licht. Als Cherenkov-Strahlung bezeichnet man eine elektromagnetische Strahlung, die von schnellen elektrischen Teilchen in elektrisch nicht leitenden Medien erzeugt wird, wenn ihre Geschwindigkeit größer ist als die Geschwindigkeit der Strahlung in diesem Medium. Die 1934 von P. A. Cherenkov entdeckte Strahlung breitet sich annähernd in Flugrichtung des ursprünglichen Gammateilchens aus und beleuchtet auf der Erdoberfläche für wenige Milliardstel Sekunden eine Fläche von einigen hundert Metern Durchmesser.

Das Potenzial von MAGIC beruht auf dem konzertierten Einsatz neuester Technologien in den zentralen Komponenten des Teleskops, die eine effizientere Lichtsammlung ermöglichen. So war Leichtbau bei allen bewegten Teilen Voraussetzung dafür, einen Spiegeldurchmesser von 17 Metern realisieren zu können, ohne dabei Kompromisse bei der Positionierungsgeschwindigkeit eingehen zu müssen. Dies ist wichtig für die Beobachtung kurzzeitiger Phänomene wie Gamma Ray Bursts. Erstmals bei einem Cherenkov-Teleskop wird eine ultraleichte Kohlefaser-Gitterrahmenstruktur als Spiegelträger eingesetzt. Auch die 934 Spiegelsegmente bestehen aus Gewichtsgründen nicht aus Glas, sondern aus Aluminium, dessen Oberfläche mit diamantbestückten Werkzeugen geschliffen wurde. Die Spiegelsegmente selbst sind mit einem computergesteuerten Verstellmechanismus ausgestattet, sodass kleinste Verformungen des Spiegelträgers, wie sie bei Lageänderungen auftreten, automatisch korrigiert werden können. Auf diese Weise bleibt die optische Qualität des Teleskops unabhängig von der Positionierungsrichtung stets gewährleistet.

Die vom Spiegel gesammelten Photonen werden auf eine aus 577 Lichtsensoren bestehende elektronische Kamera fokussiert, die im Brennpunkt des Teleskops angebracht ist und ultrakurze Belichtungszeiten von wenigen Milliardstel Sekunden erlaubt. Für die Kamera nutzt man speziell entwickelte Photomultiplier-Röhren, deren spektrale Empfindlichkeit an das zu beobachtende Cherenkov-Licht angepasst ist. Der Signaltransfer geschieht über ein ultraschnelles optisches Glasfaser-System, das eine nahezu verlustfreie Analog-Übertragung der in der Kamera erzeugten Impulse ermöglicht. Auf diese Weise kann in der Kamera selbst auf schwere Digitalisierungselektronik verzichtet und die Beeinträchtigung durch ein mechanisches Nachschwingen des Kameragehäuses minimiert werden.

Die durch konsequente Nutzung technologischer Neuentwicklungen erreichte Empfindlichkeit und schnelle Positionierbarkeit machen MAGIC zu einem weltweit einzigartigen Instrument für die Beobachtung von Gamma Ray Bursts und anderer bisher weitgehend ungeklärter astrophysikalischer Prozesse. Mit MAGIC ist es möglich, bis zu 8 Milliarden Lichtjahre weit ins Universum zu schauen. Wichtige Objekte des Beobachtungsprogramms sind dabei einige der rätselhaftesten und exotischsten Himmelskörper: Quasare und andere aktive Zentren von Galaxien, Schwarze Löcher, Pulsare und die Überreste von Supernovae, jenen gewaltigen Explosionen, die dem Lebenszyklus massereicher Sterne ein Ende setzen.

Die wissenschaftlichen Fragestellungen, auf die sich die Physiker dabei Antworten erhoffen, zählen zu den Brennpunkten der modernen Grundlagenforschung. Dazu gehören etwa die Frage, welche Mechanismen die Teilchen der kosmischen Strahlung auf die enormen Energien beschleunigen, aber auch ein besseres Verständnis der Prozesse, die zur Bildung der ältesten Objekte im Kosmos geführt haben, oder die Untersuchung der infraroten Hintergrundstrahlung im Universum und die Überprüfung des Gültigkeitsbereichs der speziellen Relativitätstheorie sowie die Suche nach Effekten der Quantengravitation. Auch die rätselhafte Dunkle Materie, die das Universum erfüllt und über deren Natur bisher nur wenig bekannt ist, könnte für MAGIC beobachtbare Spuren hinterlassen.

Das Teleskop wurde unter Federführung des Münchner Max-Planck-Instituts für Physik in den Jahren 2001 bis 2003 gebaut und seither in internationaler Kooperation betrieben. Rund 150 Wissenschaftler aus 14 Ländern beteiligen sich an dem Projekt. Deutschland ist durch das Max-Planck-Institut für Physik in München, die Humboldt-Universität Berlin sowie die Universitäten Dortmund und Würzburg vertreten.

MAGIC wird derzeit durch ein zweites, weitgehend baugleiches Teleskop ergänzt. Dies ermöglicht dann auch stereoskopische Beobachtungen von Luftschauern, was die Empfindlichkeit des Instruments noch weiter erhöhen wird.

Prof. Dr. Masahiro Teshima | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mppmu.mpg.de
http://www.mpg.de

Weitere Berichte zu: MAGIC Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie