Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Rätsel kosmischer Gammablitze auf der Spur

24.08.2005


Münchner Max-Planck-Forschern gelingt erste Hochenergie-Beobachtung eines Gammastrahlen-Ausbruchs


MAGIC, das "Major Atmospheric Gamma Imaging Cherenkov"-Teleskop. Das mit einem Spiegeldurchmesser von 17 Metern weltweit größte Teleskop seiner Art untersucht die Gamma-Strahlung ferner Galaxien und explodierender Sterne. Bild: Robert Wagner, Max-Planck-Institut für Physik


Das Laser-Kalibrationssystem des MAGIC-Teleskops, mit dessen Hilfe die Segmente des 17 Meter-Spiegels nachjustiert werden. Dadurch bleibt die hohe Abbildungsqualität auch nach schnellen Dreh- und Schwenkbewegungen gewährleistet. Bild: Robert Wagner, Max-Planck-Institut für Physik



Einen Gamma Ray Burst noch während der Explosionsphase zu beobachten ist jetzt erstmals einer internationalen Wissenschaftlergruppe um Prof. Masahiro Teshima vom Münchner Max-Planck-Institut für Physik mit MAGIC, dem weltweit größten Gammastrahlen-Teleskop auf La Palma/Spanien, gelungen. Am frühen Morgen des 13. Juli 2005 konnten die Astronomen bereits 40 Sekunden nach der Explosion und nur 20 Sekunden, nachdem der Ausbruch GRB050713a vom Satelliten SWIFT gemeldet worden war, das Teleskop auf die gemeldete Position ausrichten und den Ausbruch messen. Damit liegen zum ersten Mal gleichzeitig durchgeführte Messungen der Gamma-Emission in stark unterschiedlichen Spektralbereichen vor, nämlich von SWIFT im Röntgenlicht und von MAGIC im extrem harten Gamma-Licht (E > 175 GeV). Die Beobachtungsergebnisse wurden auf der 29. Internationalen Cosmic Ray Konferenz vorgestellt, die vom 3. bis 10. August 2005 in Puna (Indien) stattgefunden hat.

... mehr zu:
»MAGIC »Strahlung


Beobachtungen im Gammastrahlen-Bereich des elektromagnetischen Spektrums öffnen ein neues Fenster in der langen Geschichte der Astronomie. Da die Erdatmosphäre für dieses extrem energiereiche Licht undurchlässig ist, erfordern direkte Beobachtungen den Einsatz von Satelliten oder Raketen. Sie können allerdings nur Gammastrahlung bis zu Energien von maximal einigen zehn Milliarden Elektronenvolt registrieren. Für höhere Energien müssen sich die Astronomen mit einem Trick behelfen, der es erlaubt, Gammaquanten auch mit erdgebundenen Detektoren nachzuweisen.

Dazu nutzen die Forscher die Tatsache, dass sich ein hochenergetisches Gammateilchen in den oberen Schichten der Atmosphäre beim Vorbeiflug an einem Atomkern spontan in ein Elektron und in dessen Antiteilchen, ein Positron, umwandeln kann. Beide Teilchen erzeugen wiederum in einer Art Schneeballsystem weitere Sekundär-Teilchen - eine Teilchenlawine, ein so genannter "Luftschauer", entsteht. Die elektrisch geladenen Teilchen des Schauers, deren Geschwindigkeit höher ist als die Lichtgeschwindigkeit in Luft, emittieren Cherenkov-Licht. Als Cherenkov-Strahlung bezeichnet man eine elektromagnetische Strahlung, die von schnellen elektrischen Teilchen in elektrisch nicht leitenden Medien erzeugt wird, wenn ihre Geschwindigkeit größer ist als die Geschwindigkeit der Strahlung in diesem Medium. Die 1934 von P. A. Cherenkov entdeckte Strahlung breitet sich annähernd in Flugrichtung des ursprünglichen Gammateilchens aus und beleuchtet auf der Erdoberfläche für wenige Milliardstel Sekunden eine Fläche von einigen hundert Metern Durchmesser.

Das Potenzial von MAGIC beruht auf dem konzertierten Einsatz neuester Technologien in den zentralen Komponenten des Teleskops, die eine effizientere Lichtsammlung ermöglichen. So war Leichtbau bei allen bewegten Teilen Voraussetzung dafür, einen Spiegeldurchmesser von 17 Metern realisieren zu können, ohne dabei Kompromisse bei der Positionierungsgeschwindigkeit eingehen zu müssen. Dies ist wichtig für die Beobachtung kurzzeitiger Phänomene wie Gamma Ray Bursts. Erstmals bei einem Cherenkov-Teleskop wird eine ultraleichte Kohlefaser-Gitterrahmenstruktur als Spiegelträger eingesetzt. Auch die 934 Spiegelsegmente bestehen aus Gewichtsgründen nicht aus Glas, sondern aus Aluminium, dessen Oberfläche mit diamantbestückten Werkzeugen geschliffen wurde. Die Spiegelsegmente selbst sind mit einem computergesteuerten Verstellmechanismus ausgestattet, sodass kleinste Verformungen des Spiegelträgers, wie sie bei Lageänderungen auftreten, automatisch korrigiert werden können. Auf diese Weise bleibt die optische Qualität des Teleskops unabhängig von der Positionierungsrichtung stets gewährleistet.

Die vom Spiegel gesammelten Photonen werden auf eine aus 577 Lichtsensoren bestehende elektronische Kamera fokussiert, die im Brennpunkt des Teleskops angebracht ist und ultrakurze Belichtungszeiten von wenigen Milliardstel Sekunden erlaubt. Für die Kamera nutzt man speziell entwickelte Photomultiplier-Röhren, deren spektrale Empfindlichkeit an das zu beobachtende Cherenkov-Licht angepasst ist. Der Signaltransfer geschieht über ein ultraschnelles optisches Glasfaser-System, das eine nahezu verlustfreie Analog-Übertragung der in der Kamera erzeugten Impulse ermöglicht. Auf diese Weise kann in der Kamera selbst auf schwere Digitalisierungselektronik verzichtet und die Beeinträchtigung durch ein mechanisches Nachschwingen des Kameragehäuses minimiert werden.

Die durch konsequente Nutzung technologischer Neuentwicklungen erreichte Empfindlichkeit und schnelle Positionierbarkeit machen MAGIC zu einem weltweit einzigartigen Instrument für die Beobachtung von Gamma Ray Bursts und anderer bisher weitgehend ungeklärter astrophysikalischer Prozesse. Mit MAGIC ist es möglich, bis zu 8 Milliarden Lichtjahre weit ins Universum zu schauen. Wichtige Objekte des Beobachtungsprogramms sind dabei einige der rätselhaftesten und exotischsten Himmelskörper: Quasare und andere aktive Zentren von Galaxien, Schwarze Löcher, Pulsare und die Überreste von Supernovae, jenen gewaltigen Explosionen, die dem Lebenszyklus massereicher Sterne ein Ende setzen.

Die wissenschaftlichen Fragestellungen, auf die sich die Physiker dabei Antworten erhoffen, zählen zu den Brennpunkten der modernen Grundlagenforschung. Dazu gehören etwa die Frage, welche Mechanismen die Teilchen der kosmischen Strahlung auf die enormen Energien beschleunigen, aber auch ein besseres Verständnis der Prozesse, die zur Bildung der ältesten Objekte im Kosmos geführt haben, oder die Untersuchung der infraroten Hintergrundstrahlung im Universum und die Überprüfung des Gültigkeitsbereichs der speziellen Relativitätstheorie sowie die Suche nach Effekten der Quantengravitation. Auch die rätselhafte Dunkle Materie, die das Universum erfüllt und über deren Natur bisher nur wenig bekannt ist, könnte für MAGIC beobachtbare Spuren hinterlassen.

Das Teleskop wurde unter Federführung des Münchner Max-Planck-Instituts für Physik in den Jahren 2001 bis 2003 gebaut und seither in internationaler Kooperation betrieben. Rund 150 Wissenschaftler aus 14 Ländern beteiligen sich an dem Projekt. Deutschland ist durch das Max-Planck-Institut für Physik in München, die Humboldt-Universität Berlin sowie die Universitäten Dortmund und Würzburg vertreten.

MAGIC wird derzeit durch ein zweites, weitgehend baugleiches Teleskop ergänzt. Dies ermöglicht dann auch stereoskopische Beobachtungen von Luftschauern, was die Empfindlichkeit des Instruments noch weiter erhöhen wird.

Prof. Dr. Masahiro Teshima | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mppmu.mpg.de
http://www.mpg.de

Weitere Berichte zu: MAGIC Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten