Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starkes Magnetfeld verändert Metall

10.08.2005


Die Anzahl der Ladungsträger in einem nichtmagnetischen Metall wie etwa Kupfer zeichnet sich dadurch aus, dass sie selbst von großen Magnetfeldern unbeeinflusst bleibt. Für die Verbindung CeBiPt, einem so genannten Halbmetall aus Cer, Wismut und Platin, gilt diese bisher als unumstößlich geltende Eigenschaft jedoch nicht. Das hat Prof. Joachim Wosnitza, Physiker im Forschungszentrum Rossendorf (FZR), in Kooperation mit dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) herausgefunden. Erstmalig konnte damit diese wichtigste Kenngröße eines Metalls durch das Anlegen eines hohen Magnetfeldes geändert werden.



Ein Metall unterscheidet sich von einem Nichtmetall durch das Vorhandensein frei beweglicher Träger der elektrischen Ladung, Elektronen, die nicht an "ihr Atom" im Festkörper gebunden sind. Sie transportieren den elektrischen Strom. Daher ist die Anzahl der Ladungsträger pro Volumen eine der wichtigsten Kenngrößen eines Metalls. Beim Übergang in einem magnetisch geordneten Zustand kann sich diese Kenngröße sprunghaft ändern.

... mehr zu:
»CeBiPt »FZR »IFW »Magnetfeld »Metall »Tesla


Festkörperphysiker waren sich aber bisher einig: ein hohes Magnetfeld kann diese Anzahl in einem nichtmagnetischen Metall nur unwesentlich beeinflussen. Von einem hohen Magnetfeld spricht man ab einigen Tesla (Tesla ist die physikalische Einheit für die Magnetfeldstärke). Im Vergleich zu einem Tesla ist das Erdmagnetfeld mit ca. 50 Mikrotesla um das zwanzigtausendfache schwächer. Gewöhnliche nichtmagnetische Metalle zeigen sich selbst von hohen Magnetfeldern unbeeindruckt.

Bei dem exotischen Metall CeBiPt ist das anders, wie Prof. Joachim Wosnitza vom FZR-Institut Hochfeld-Magnetlabor Dresden zusammen mit der Doktorandin Nadezda Kozlowa vom IFW Dresden und in Kooperation mit weiteren Physikern herausgefunden hat. Oberhalb von etwa 25 Tesla ändern sich die elektronischen Eigenschaften von CeBiPt ohne Anzeichen magnetischer Ordnung drastisch. Dabei scheinen sich zwei Effekte zu überlagern, die es zum ersten Mal erlaubten, eine Änderung der Ladungsträgerzahl durch Anlegen eines Magnetfeldes an ein nichtmagnetisches Metall zu beobachten. Zum Einen sind in diesem Material nur sehr wenige Elektronen am elektrischen Transport beteiligt und zum Anderen befinden sich Cer-Atome in der Verbindung. Die grundlegend neue Vermutung ist nun, dass die Wirkung des angelegten Magnetfeldes auf die beweglichen Ladungsträger durch die Cer-Atome noch verstärkt wird, wodurch entgegen bisherigen Erfahrungen bei einem bestimmten Wert des angelegten Feldes eine dramatische Änderung der Ladungsträgerzahl gemessen werden kann. Inwiefern diese Vorstellung zutrifft, wird gegenwärtig weiter gesucht.

Durch Experimente in gepulsten Magnetfeldern bis zu 50 Tesla am Hochfeld-Pilotlabor im IFW Dresden konnte Nadezda Kozlova im Rahmen ihrer Doktorarbeit zeigen, dass sich die elektronische Struktur von CeBiPt bei etwa 25 Tesla ändert. Dieses überraschende Ergebnis ist auf sehr großes Interesse der Festköperphysiker gestoßen. Die entsprechende Publikation wird demnächst in der angesehenen Fachzeitschrift "Physical Review Letters" veröffentlicht. Initiiert durch Joachim Wosnitza wurden diese Arbeiten im Rahmen des Sonderforschungsbereichs "Seltenerd-Übergangsmetallverbindungen: Struktur, Magnetismus und Transport" und in Kooperation mit experimentell und theoretisch arbeitenden Gruppen der Universitäten Karlsruhe, Braunschweig und Hiroshima in Japan durchgeführt.

Veröffentlichung:
N. Kozlova, J. Hagel, M. Doerr, J. Wosnitza, D. Eckert, K.-H. Müller, L. Schultz, I. Opahle, S. Elgazzar, Manuel Richter, G. Goll, H. v. Löhneysen, G. Zwicknagl, T. Yoshino, T. Takabatake, "Magnetic-field induced band-structure change in CeBiPt", in: Physical Review Letters, im Druck, cond-mat/0502279

Ansprechpartner (FZR):
Prof. Joachim Wosnitza
Direktor des Instituts Hochfeld-Magnetlabor Dresden
Forschungszentrum Rossendorf
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 3524; Email: j.wosnitza@fz-rossendorf.de

Ansprechpartner (IFW):
Nadezda V. Kozlova
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
Helmholtz-Str. 20, 01069 Dresden
Tel.: 0351 4659 - 403; Email: N.V.Kozlova@ifw-dresden.de

Pressekontakt (FZR):
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Email: c.bohnet@fz-rossendorf.de

Information:
Bei der Anwendung hoher Magnetfelder arbeiten das FZR und das IFW Dresden, ebenfalls ein Leibniz-Institut, sowie weitere Dresdner Institute und die Technische Universität Dresden eng zusammen.

Das Forschungszentrum Rossendorf (FZR) betreibt Grundlagen- und anwendungsorientierte Forschung mit Photonen- und Teilchenstrahlen, wobei
· die Erforschung der Materie auf der Skala von Nanometern,
· der Schutz von Mensch und Umwelt vor technischen Risiken und
· der Einsatz bei Tumor- und Stoffwechselerkrankungen
den Schwerpunkt bilden. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZR ist mit ca. 550 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 56 Mill. Euro. Hinzu kommen etwa 6 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiterinnen und Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Berichte zu: CeBiPt FZR IFW Magnetfeld Metall Tesla

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics