Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starkes Magnetfeld verändert Metall

10.08.2005


Die Anzahl der Ladungsträger in einem nichtmagnetischen Metall wie etwa Kupfer zeichnet sich dadurch aus, dass sie selbst von großen Magnetfeldern unbeeinflusst bleibt. Für die Verbindung CeBiPt, einem so genannten Halbmetall aus Cer, Wismut und Platin, gilt diese bisher als unumstößlich geltende Eigenschaft jedoch nicht. Das hat Prof. Joachim Wosnitza, Physiker im Forschungszentrum Rossendorf (FZR), in Kooperation mit dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) herausgefunden. Erstmalig konnte damit diese wichtigste Kenngröße eines Metalls durch das Anlegen eines hohen Magnetfeldes geändert werden.



Ein Metall unterscheidet sich von einem Nichtmetall durch das Vorhandensein frei beweglicher Träger der elektrischen Ladung, Elektronen, die nicht an "ihr Atom" im Festkörper gebunden sind. Sie transportieren den elektrischen Strom. Daher ist die Anzahl der Ladungsträger pro Volumen eine der wichtigsten Kenngrößen eines Metalls. Beim Übergang in einem magnetisch geordneten Zustand kann sich diese Kenngröße sprunghaft ändern.

... mehr zu:
»CeBiPt »FZR »IFW »Magnetfeld »Metall »Tesla


Festkörperphysiker waren sich aber bisher einig: ein hohes Magnetfeld kann diese Anzahl in einem nichtmagnetischen Metall nur unwesentlich beeinflussen. Von einem hohen Magnetfeld spricht man ab einigen Tesla (Tesla ist die physikalische Einheit für die Magnetfeldstärke). Im Vergleich zu einem Tesla ist das Erdmagnetfeld mit ca. 50 Mikrotesla um das zwanzigtausendfache schwächer. Gewöhnliche nichtmagnetische Metalle zeigen sich selbst von hohen Magnetfeldern unbeeindruckt.

Bei dem exotischen Metall CeBiPt ist das anders, wie Prof. Joachim Wosnitza vom FZR-Institut Hochfeld-Magnetlabor Dresden zusammen mit der Doktorandin Nadezda Kozlowa vom IFW Dresden und in Kooperation mit weiteren Physikern herausgefunden hat. Oberhalb von etwa 25 Tesla ändern sich die elektronischen Eigenschaften von CeBiPt ohne Anzeichen magnetischer Ordnung drastisch. Dabei scheinen sich zwei Effekte zu überlagern, die es zum ersten Mal erlaubten, eine Änderung der Ladungsträgerzahl durch Anlegen eines Magnetfeldes an ein nichtmagnetisches Metall zu beobachten. Zum Einen sind in diesem Material nur sehr wenige Elektronen am elektrischen Transport beteiligt und zum Anderen befinden sich Cer-Atome in der Verbindung. Die grundlegend neue Vermutung ist nun, dass die Wirkung des angelegten Magnetfeldes auf die beweglichen Ladungsträger durch die Cer-Atome noch verstärkt wird, wodurch entgegen bisherigen Erfahrungen bei einem bestimmten Wert des angelegten Feldes eine dramatische Änderung der Ladungsträgerzahl gemessen werden kann. Inwiefern diese Vorstellung zutrifft, wird gegenwärtig weiter gesucht.

Durch Experimente in gepulsten Magnetfeldern bis zu 50 Tesla am Hochfeld-Pilotlabor im IFW Dresden konnte Nadezda Kozlova im Rahmen ihrer Doktorarbeit zeigen, dass sich die elektronische Struktur von CeBiPt bei etwa 25 Tesla ändert. Dieses überraschende Ergebnis ist auf sehr großes Interesse der Festköperphysiker gestoßen. Die entsprechende Publikation wird demnächst in der angesehenen Fachzeitschrift "Physical Review Letters" veröffentlicht. Initiiert durch Joachim Wosnitza wurden diese Arbeiten im Rahmen des Sonderforschungsbereichs "Seltenerd-Übergangsmetallverbindungen: Struktur, Magnetismus und Transport" und in Kooperation mit experimentell und theoretisch arbeitenden Gruppen der Universitäten Karlsruhe, Braunschweig und Hiroshima in Japan durchgeführt.

Veröffentlichung:
N. Kozlova, J. Hagel, M. Doerr, J. Wosnitza, D. Eckert, K.-H. Müller, L. Schultz, I. Opahle, S. Elgazzar, Manuel Richter, G. Goll, H. v. Löhneysen, G. Zwicknagl, T. Yoshino, T. Takabatake, "Magnetic-field induced band-structure change in CeBiPt", in: Physical Review Letters, im Druck, cond-mat/0502279

Ansprechpartner (FZR):
Prof. Joachim Wosnitza
Direktor des Instituts Hochfeld-Magnetlabor Dresden
Forschungszentrum Rossendorf
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 3524; Email: j.wosnitza@fz-rossendorf.de

Ansprechpartner (IFW):
Nadezda V. Kozlova
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
Helmholtz-Str. 20, 01069 Dresden
Tel.: 0351 4659 - 403; Email: N.V.Kozlova@ifw-dresden.de

Pressekontakt (FZR):
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Email: c.bohnet@fz-rossendorf.de

Information:
Bei der Anwendung hoher Magnetfelder arbeiten das FZR und das IFW Dresden, ebenfalls ein Leibniz-Institut, sowie weitere Dresdner Institute und die Technische Universität Dresden eng zusammen.

Das Forschungszentrum Rossendorf (FZR) betreibt Grundlagen- und anwendungsorientierte Forschung mit Photonen- und Teilchenstrahlen, wobei
· die Erforschung der Materie auf der Skala von Nanometern,
· der Schutz von Mensch und Umwelt vor technischen Risiken und
· der Einsatz bei Tumor- und Stoffwechselerkrankungen
den Schwerpunkt bilden. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZR ist mit ca. 550 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 56 Mill. Euro. Hinzu kommen etwa 6 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiterinnen und Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Berichte zu: CeBiPt FZR IFW Magnetfeld Metall Tesla

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops