Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Doppelspalt unter neuem Blickwinkel

10.08.2005


Doppelspalt-Experiment mit Elektronen im Ort (links) und in der Zeit (rechts). Die Beugungsmuster im Fernfeld eines konventionellen Einzel- oder Doppelspalts zeigen entweder keine Struktur (Fotoplatte im Hintergrund links) oder Interferenzstreifen (Fotoplatte im Vordergrund links). Die Beleuchtung der Spalte erfolgt durch eine Elektronenquelle zwischen den beiden Masken. In der neuen Version des Doppelspalts (bild rechts) wird die Elektronenquelle durch ein Atom ersetzt, das durch einen extrem kurzen Lichtpuls mit linearer Polarisation angeregt wird, und die fotografischen Platten durch Elektronendetektoren. Die Photoelektronenspektren, gemessen durch die beiden Detektoren, zeigen nur dann Oszillationen, wenn zwei Zeitfenster zur Verfügung stehen (in der rechten Abbildung nach vorn links). Bild: Max-Planck-Institut für Quantenoptik


Mit einer neuen Variante des berühmten Doppelspalt-Experiments lässt sich Zeit im Attosekundenbereich extrem genau interferometrisch messen


Das Doppelspalt-Experiment ist ein Klassiker. Seit 200 Jahren beschäftigt der Versuch Physiker immer wieder aufs Neue: Das Experiment, bei dem ursprünglich nur ein Lichtstrahl in zwei miteinander wechselwirkende Strahlen aufgeteilt wurde, war für die Lichtwellentheorie des 19. Jahrhunderts ebenso wichtig wie für die Gedankenexperimente Einsteins oder die Philosophie und Grundlagen der Quantenmechanik. Nun hat ein Team von Wissenschaftlern des Max-Planck-Instituts für Quantenoptik den Versuch von einst modernisiert, indem es mit Hilfe eines Laserpulses die zwei Spalte durch extrem schmale Zeitfenster ersetzt hat. So kann man Zeitmessungen im Attosekundenbereich in Interferenz-Messungen überführen, das heißt: Die Zeit wird mit einem der genauesten Messverfahren überhaupt gemessen (Physical Review Letters, 22. Juli 2005)

Interferenzphänomene und -experimente haben in der Physik schon immer eine große Rolle gespielt. Das Prinzip ist stets ähnlich; in der Regel erreichen Wellen oder Teilchen einen Detektor auf zwei verschiedenen Wegen. Durch Überlagerung der beiden Möglichkeiten entsteht im Detektor ein Interferenzmuster, das heißt ein Muster, in dem einige Stellen ausgelöscht sind und andere besonders stark ausgeprägt sind. Interferenzexperimente sind heute zum Beispiel im Zusammenhang mit optischen Präzisionsmessungen wichtig. Die Interferenz von Licht- oder Materie-Wellen spielte aber auch für die Grundlagen der Quantenphysik eine große Rolle, besonders bei der Demonstration des Teilchen-Welle-Dualismus.


Erstmals wurde das Doppelspalt-Experiment zur Interferenz von Licht um 1805 von Thomas Young durchgeführt; damals lieferte es einen entscheidenden Beweis für die Wellennatur des Lichtes. Im 20. Jahrhundert wurde dann gezeigt, dass auch atomare Teilchen und einzelne Photonen miteinander interferieren können, und die Demonstration der Interferenz einzelner Elektronen im Youngschen Doppelspaltexperiment durch Claus Jönsson wurde in den 1960er Jahren ein spektakulärer Erfolg. Inzwischen hat man das Doppelspaltexperiment auch mit anderen Teilchen, wie Atomen, Neutronen und sogar großen Molekülen, durchgeführt.

Nach der Quantenphysik ist es die Überlagerung der beiden Wege, die ein Photon oder ein anderes Teilchen nehmen kann, die zur Interferenz führt. Daher kann auch ein einzelnes Photon, das im Prinzip jeden der beiden Wege nehmen kann, mit sich selbst interferieren. So spielte das Doppelspalt-Experiment in den 1920er Jahren in den berühmten Diskussionen von Albert Einstein mit Niels Bohr über die Grundlagen der Quantenmechanik eine wichtige Rolle. Später formulierte Richard Feynman anhand dieses Experiments mit Hilfe der Pfadintegrale seinen Zugang zur Quantenphysik. Er hielt das Doppelspalt-Experiment und dessen Deutung für das "einzige Rätsel" der Quantenphysik.

Jetzt wurde ein besonderes originelles Interferenzexperiment nach Art des Doppelspaltexperiments am Max-Planck-Institut für Quantenoptik verwirklicht. Eine Schlitzblende gibt es bei diesem Experiment nicht, denn hier werden die
beiden Wege für die Teilchen - in diesem Falle: Elektronen - durch die Schwingungen eines extrem kurzen Lichtpulses geschaffen. Der verwendete Lichtpuls besteht nur aus wenigen elektromagnetischen Schwingungen; die einzelnen Wellenberge der Lichtwelle öffnen zeitlich hintereinander mehrere "Schlitze" für das Elektron.

Der kurze Lichtpuls wird auf ein Argon-Atom gesandt. Bei zwei Schwingungen kann das Licht ein Elektron in dem Atom im Prinzip zweimal veranlassen, das Atom zu verlassen: Das Licht öffnet sozusagen zwei Fenster und es tritt Interferenz auf. Bei einer einzelnen Schwingung wird nur ein Fenster geöffnet und es tritt keine Interferenz auf.

Ein kurzer Lichtpuls, der in einer Ebene schwingt, kann sogar beide Situationen gleichzeitig liefern, wenn die Einhüllende seiner Schwingungen geeignet liegt. Dann wird nach der einen Seite ein einzelnes Schwingungsmaximum beobachtet, während nach der anderen Seite zwei Maxima vorhanden sind. Ein Elektron, das der Richtung der beiden Maxima unter dem Einfluss des Lichtfeldes das Atom verlässt, führt zur Interferenz, während eine Abtrennung des Elektrons in die entgegengesetzte Richtung kein Interferenzsignal erzeugt.

Damit das Experiment funktioniert, ist es notwendig, den Zeitverlauf des Lichtpulses genau zu kontrollieren. Man muss also die relative Lage bzw. Phase der Trägerwelle zur Einhüllenden des Lichtpulses sehr genau einstellen - und das gelang der Forschern im Bereich von Attosekunden (10-18 Sekunden, also einer Trillionstel Sekunde).

Beim klassischen Doppelspalt-Experiment hängt die beobachtete Interferenzstruktur von der Breite der beiden Spalte und von deren Abstand ab. So kann man über die Messung der Interferenz hochpräzise kleinste Abstände vermessen. Bei dem neuen Experiment wird die Spalt-Struktur im klassischen Experiment durch die Zeitstruktur der Elektronendynamik ersetzt. Entsprechend ist man nunmehr in der Lage, mit den Methoden und der Genauigkeit der Interferometrie eine extrem genaue Zeitmessung auf der Zeitskala im Attosekundenbereich vorzunehmen.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie