Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Doppelspalt unter neuem Blickwinkel

10.08.2005


Doppelspalt-Experiment mit Elektronen im Ort (links) und in der Zeit (rechts). Die Beugungsmuster im Fernfeld eines konventionellen Einzel- oder Doppelspalts zeigen entweder keine Struktur (Fotoplatte im Hintergrund links) oder Interferenzstreifen (Fotoplatte im Vordergrund links). Die Beleuchtung der Spalte erfolgt durch eine Elektronenquelle zwischen den beiden Masken. In der neuen Version des Doppelspalts (bild rechts) wird die Elektronenquelle durch ein Atom ersetzt, das durch einen extrem kurzen Lichtpuls mit linearer Polarisation angeregt wird, und die fotografischen Platten durch Elektronendetektoren. Die Photoelektronenspektren, gemessen durch die beiden Detektoren, zeigen nur dann Oszillationen, wenn zwei Zeitfenster zur Verfügung stehen (in der rechten Abbildung nach vorn links). Bild: Max-Planck-Institut für Quantenoptik


Mit einer neuen Variante des berühmten Doppelspalt-Experiments lässt sich Zeit im Attosekundenbereich extrem genau interferometrisch messen


Das Doppelspalt-Experiment ist ein Klassiker. Seit 200 Jahren beschäftigt der Versuch Physiker immer wieder aufs Neue: Das Experiment, bei dem ursprünglich nur ein Lichtstrahl in zwei miteinander wechselwirkende Strahlen aufgeteilt wurde, war für die Lichtwellentheorie des 19. Jahrhunderts ebenso wichtig wie für die Gedankenexperimente Einsteins oder die Philosophie und Grundlagen der Quantenmechanik. Nun hat ein Team von Wissenschaftlern des Max-Planck-Instituts für Quantenoptik den Versuch von einst modernisiert, indem es mit Hilfe eines Laserpulses die zwei Spalte durch extrem schmale Zeitfenster ersetzt hat. So kann man Zeitmessungen im Attosekundenbereich in Interferenz-Messungen überführen, das heißt: Die Zeit wird mit einem der genauesten Messverfahren überhaupt gemessen (Physical Review Letters, 22. Juli 2005)

Interferenzphänomene und -experimente haben in der Physik schon immer eine große Rolle gespielt. Das Prinzip ist stets ähnlich; in der Regel erreichen Wellen oder Teilchen einen Detektor auf zwei verschiedenen Wegen. Durch Überlagerung der beiden Möglichkeiten entsteht im Detektor ein Interferenzmuster, das heißt ein Muster, in dem einige Stellen ausgelöscht sind und andere besonders stark ausgeprägt sind. Interferenzexperimente sind heute zum Beispiel im Zusammenhang mit optischen Präzisionsmessungen wichtig. Die Interferenz von Licht- oder Materie-Wellen spielte aber auch für die Grundlagen der Quantenphysik eine große Rolle, besonders bei der Demonstration des Teilchen-Welle-Dualismus.


Erstmals wurde das Doppelspalt-Experiment zur Interferenz von Licht um 1805 von Thomas Young durchgeführt; damals lieferte es einen entscheidenden Beweis für die Wellennatur des Lichtes. Im 20. Jahrhundert wurde dann gezeigt, dass auch atomare Teilchen und einzelne Photonen miteinander interferieren können, und die Demonstration der Interferenz einzelner Elektronen im Youngschen Doppelspaltexperiment durch Claus Jönsson wurde in den 1960er Jahren ein spektakulärer Erfolg. Inzwischen hat man das Doppelspaltexperiment auch mit anderen Teilchen, wie Atomen, Neutronen und sogar großen Molekülen, durchgeführt.

Nach der Quantenphysik ist es die Überlagerung der beiden Wege, die ein Photon oder ein anderes Teilchen nehmen kann, die zur Interferenz führt. Daher kann auch ein einzelnes Photon, das im Prinzip jeden der beiden Wege nehmen kann, mit sich selbst interferieren. So spielte das Doppelspalt-Experiment in den 1920er Jahren in den berühmten Diskussionen von Albert Einstein mit Niels Bohr über die Grundlagen der Quantenmechanik eine wichtige Rolle. Später formulierte Richard Feynman anhand dieses Experiments mit Hilfe der Pfadintegrale seinen Zugang zur Quantenphysik. Er hielt das Doppelspalt-Experiment und dessen Deutung für das "einzige Rätsel" der Quantenphysik.

Jetzt wurde ein besonderes originelles Interferenzexperiment nach Art des Doppelspaltexperiments am Max-Planck-Institut für Quantenoptik verwirklicht. Eine Schlitzblende gibt es bei diesem Experiment nicht, denn hier werden die
beiden Wege für die Teilchen - in diesem Falle: Elektronen - durch die Schwingungen eines extrem kurzen Lichtpulses geschaffen. Der verwendete Lichtpuls besteht nur aus wenigen elektromagnetischen Schwingungen; die einzelnen Wellenberge der Lichtwelle öffnen zeitlich hintereinander mehrere "Schlitze" für das Elektron.

Der kurze Lichtpuls wird auf ein Argon-Atom gesandt. Bei zwei Schwingungen kann das Licht ein Elektron in dem Atom im Prinzip zweimal veranlassen, das Atom zu verlassen: Das Licht öffnet sozusagen zwei Fenster und es tritt Interferenz auf. Bei einer einzelnen Schwingung wird nur ein Fenster geöffnet und es tritt keine Interferenz auf.

Ein kurzer Lichtpuls, der in einer Ebene schwingt, kann sogar beide Situationen gleichzeitig liefern, wenn die Einhüllende seiner Schwingungen geeignet liegt. Dann wird nach der einen Seite ein einzelnes Schwingungsmaximum beobachtet, während nach der anderen Seite zwei Maxima vorhanden sind. Ein Elektron, das der Richtung der beiden Maxima unter dem Einfluss des Lichtfeldes das Atom verlässt, führt zur Interferenz, während eine Abtrennung des Elektrons in die entgegengesetzte Richtung kein Interferenzsignal erzeugt.

Damit das Experiment funktioniert, ist es notwendig, den Zeitverlauf des Lichtpulses genau zu kontrollieren. Man muss also die relative Lage bzw. Phase der Trägerwelle zur Einhüllenden des Lichtpulses sehr genau einstellen - und das gelang der Forschern im Bereich von Attosekunden (10-18 Sekunden, also einer Trillionstel Sekunde).

Beim klassischen Doppelspalt-Experiment hängt die beobachtete Interferenzstruktur von der Breite der beiden Spalte und von deren Abstand ab. So kann man über die Messung der Interferenz hochpräzise kleinste Abstände vermessen. Bei dem neuen Experiment wird die Spalt-Struktur im klassischen Experiment durch die Zeitstruktur der Elektronendynamik ersetzt. Entsprechend ist man nunmehr in der Lage, mit den Methoden und der Genauigkeit der Interferometrie eine extrem genaue Zeitmessung auf der Zeitskala im Attosekundenbereich vorzunehmen.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

nachricht Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit
21.08.2017 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz