Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Damit dem Quantencomputer ein Licht aufgeht - Einzelne Moleküle als überlegene Photonenquelle

20.06.2005


Quantencomputer sollen auch bei hochkomplexen Anwendungen einen Bruchteil der Rechnerzeiten herkömmlicher Geräte benötigen - und damit mehrere Milliarden Mal schneller sein. Noch aber sind Quantencomputer eine Zukunftsvision, der die Wissenschaft allerdings Schritt für Schritt näher kommt. Diese Maschinen nutzen die quantenmechanischen Eigenschaften von Partikeln und benötigen dazu eine nicht ganz herkömmliche Lichtquelle. Dr. Andreas Zumbusch, jetzt am University College London, führte dazu an der Ludwig-Maximilians-Universität (LMU) München Arbeiten durch, die zeigen, dass ein einzelnes Molekül diese Aufgabe erfüllen kann. Zusammen mit anderen Forschern am Lehrstuhl Prof. Dr. Christoph Bräuchle, Department für Chemie, liefert er in der aktuellen Ausgabe des Fachmagazins Physical Review Letters den Nachweis, dass das neue Verfahren den bisher genutzten Methoden überlegen ist, weil eine Voraussetzung für erfolgreiche Quanten-computation sehr viel besser erfüllt wird: Über einen langen Zeitraum werden Photonen, also Lichteinheiten oder Quanten elektromagnetischer Energie, ausgestrahlt, die in ihren Eigenschaften ununterscheidbar sind.



In herkömmlichen Computern sind die kleinsten Einheiten digitalisierter Information so genannte Bits, die nur in den Zuständen 0 oder 1 vorkommen. Quantencomputer dagegen kodieren Informationen als Qubits, also Quantum Bits, die - entgegen jeder Intuition - als 0, als 1 oder als beides gleichzeitig existieren können. Aufgrund dieser Superposition können Quantencomputer anders als die heute genutzten Geräte sehr viele Rechenoperationen parallel ausführen. Erste Experimente haben bereits bestätigt, dass Quantencomputation möglich ist, wenn auch nur bei einer sehr kleinen Anzahl von Qubits.



Als Qubits eignen sich Photonen, also Lichtquanten, sehr gut, weil sie sehr einfach und in großer Menge produziert werden können und leicht zu manipulieren sind. In Quantencomputern, die mit Licht arbeiten, stammen die Photonen aus einer Lichtquelle. "Dafür braucht man aber völlig neuartige Lichtquellen", betont Zumbusch. "Sie müssen ein Photon nach dem anderen aussenden, und diese dürfen sich in keiner ihrer physikalischen Eigenschaften, etwa in der Frequenz, also Farbe, oder Polarisation, unterscheiden." Bisher wurde das mit Hilfe einer extrem abgeschwächten Laserlichtquelle erreicht. Statistisch wurde dann in einem sehr kurzen Zeitraum nur ein Photon gesehen.

"Das ist aber nur eine sehr schwache Lichtquelle", so Zumbusch. "Man kann stattdessen auch einzelne Quantenobjekte, etwa Quantendots, also Quantenpunkte, Atome oder Moleküle verwenden. Aufgrund ihrer Quantennatur können sie nur ein Photon nach dem anderen aussenden." Nachgewiesen wurde mittlerweile die Möglichkeit, Quantendots und Atome als Lichtquelle einzusetzen. Dabei traten allerdings auch Probleme auf. "Aus den Dots kommen Photonen, bei denen entscheidende Eigenschaften, etwa die Frequenz, schlecht definiert sind", berichtet Zumbusch. "Die Atome als Emitter dagegen können nur für eine sehr kurze Zeit festgehalten werden."

"Wir zeigen jetzt aber, dass man ein einzelnes Molekül mit einem von uns entwickelten Anregungsverfahren als Quelle für Photonen der gewünschten Qualität verwenden kann", so Zumbusch. "Ein Molekül kann dabei über mehrere Stunden einen Strom hochqualitativer Photonen emittieren." Andere Experimente haben gezeigt, dass die Emission sogar tagelang anhalten kann.

"Das Wichtigste ist aber, dass die Photonen ununterscheidbar sind", so Zumbusch. Als Beweis dafür wies das Forscherteam die so genannte Zwei-Photoneninterferenz nach. Dabei werden zwei Photonen nacheinander emittiert. Das erste bewegt sich über eine längere Strecke und trifft deshalb zeitgleich mit dem nach ihm ausgesandten Photon auf einen Spiegel auf. Dieser reflektiert eine Hälfte des eintreffenden Lichts, lässt aber die andere Hälfte durch. Im vorliegenden Experiment konnten die beiden Photonen nach dem Auftreffen auf den Spiegel nur noch gemeinsam nachgewiesen werden. Dieses Ergebnis bei diesem Experiment gilt als Nachweis der Ununterscheidbarkeit von Photonen. Bisher konnte die Ausstrahlung ununterscheidbarer Photonen nur auf unpraktisch geringen Lichtlevels erreicht werden.

"Den Quantencomputer werden wir auch mit unseren Ergebnissen vorerst noch nicht bauen können", meint Zumbusch. "Wir wollen jetzt aber eine gepulste Anregung verwenden, so dass wir die Photonen wie auf Knopfdruck erzeugen können. Dazu kommt dann noch die Möglichkeit, sie besser nachweisen zu können, damit wir aus einem Molekül eine möglichst intensive Quelle einzelner ununterscheidbarer Photonen machen können." (suwe)

Weitere Informationen:
Kiraz, M. Ehrl, Th. Hellerer, Ö. E. Müstecaplolu, C. Bräuchle, and A. Zumbusch, "Indistinguishable Photons from a Single Molecule" Phys. Rev. Lett., 94, 223602 (2005)

Ansprechpartner:

Dr. Andreas Zumbusch
Reader in Biophysics
Department of Physics and Astronomy
University College London
Tel: +44 (0)20 7679 3486
Fax: +44 (0)20 7679 7145
E-Mail: a.zumbusch@ucl.ac.uk

Luise Dirscherl | idw

Weitere Berichte zu: Lichtquelle Photon Quantencomputer Zumbusch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie