Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asphärische Supernovaexplosionen sind Quellen kosmischer Gamma-Blitze

30.05.2005


Asphärische Explosion eines massereichen Sterns und richtungsabhängige Form der Sauerstofflinie. Bei der Supernova "1998bw", von der ein Gammablitz gesichtet wurde, zeigte der Jet und der Gammablitz in Richtung Erde. Die Sauerstofflinie im Spektrum hatte ein scharfes Maximum (rot: Modell, schwarz: Messung). Bei der Supernova "2003jd" erfolgte die Beobachtung mit großem Winkel zur Jetachse und die Sauerstofflinie hatte zwei Maxima. Bild: Mazzali et al.


Massereiche Sterne können auch stark asphärisch explodieren. Das hat jetzt ein internationales Team unter Beteiligung von Astronomen vom Max-Planck-Institut für Astrophysik (MPA) in Garching nachgewiesen. Durch genaue Beobachtung der Supernova "2003jd" mit den weltweit größten Teleskopen gelang den Wissenschaftlern zudem die Entdeckung, dass auch asphärische Sternexplosionen Quellen von rätselhaften kosmischen Gammablitzen sein können (Science, 27. Mai 2005)

... mehr zu:
»Gammablitz »Jets »Supernova

Sterne leuchten, weil in ihrem Inneren Kernreaktionen ablaufen, bei denen leichtere chemische Elemente zu schwereren verschmelzen und dabei Energie freisetzen. Wenn ein Stern mit mehr als der zehnfachen Masse der Sonne seinen nuklearen Brennstoff aufgebraucht hat, führt die Gravitationskraft dazu, dass der zentrale Eisenkern des Sterns kollabiert. Bei der folgenden Explosion wird der Großteil der Sternmaterie mit hoher Geschwindigkeit ausgeschleudert. Nukleares Brennen und die Aufheizung des Sterngases durch die nach außen laufende Stoßwelle erzeugen eine sehr helle Leuchterscheinung, die den explodierenden Stern für einige Tage so hell strahlen lässt wie eine ganze Galaxie - eine Supernova leuchtet auf.

Eine spezielle Art von Supernovae, Typ Ic, werden mit Gammablitzen in Verbindung gebracht - extrem helle, aber kurze Ausbrüche sehr intensiver Gamma- und Röntgenstrahlung. Sie dauern üblicherweise nur wenige Sekunden. Ihre Entstehungsorte und ihr Ursprung stellte für die Astronomen über Jahrzehnte ein Rätsel dar. Dank moderner Röntgen- und Gamma-Teleskope im Weltall wissen wir heute, dass diese Gammablitze aus weit entfernten Galaxien stammen. Wie lassen sich nun die großen Energiemengen, die von den Gammablitzen freigesetzt werden, erklären. Die Wissenschaftler glauben, dass die Explosionen, von denen solche Blitze stammen, stark asphärisch und in Form gerichteter Gasströme, sogenannter Jets ablaufen müssen. Im Gegensatz dazu wurden normale Supernovae bisher als weitgehend kugelförmige Explosionen betrachtet.


Die speziellen Supernovae, die mit Gammablitzen in Verbindung stehen, könnten allerdings auch selbst eine stark asphärische Form haben. Die Forscher des Max-Planck-Instituts für Astrophysik (MPA), des Italienischen Nationalen Instituts für Astrophysik (INAF), und der Universitäten in Tokio und des kalifornischen Berkeley haben theoretische Modelle von solchen stark deformierten Explosionen berechnet. Basierend auf diesen Modellen wurde im Jahr 2002 vorhergesagt, dass sich die Spektren der Supernovae unterscheiden sollten, je nachdem, unter welchem Blickwinkel die Explosionen erfasst werden. Insbesondere Beobachtungen, die mehrere Monate nach der Explosion gemacht werden, sollten stark von der Blickrichtung abhängen. Solche Beobachtungen der späten Entwicklung einer Supernova sind dazu geeignet, die gesamte abgestoßene Materie zu untersuchen, da das Gas durch die Ausbreitung zu dieser Zeit durchsichtig wird. Zum Beispiel sagten die Rechnungen voraus, dass die stärkste Linie im Strahlungsspektrum - eine Linie des neutralen Sauerstoffs - einen einzigen, schmalen Buckel haben sollte, wenn die Supernova aus der Richtung des Jets beobachtet wird. In diesem Fall würde man auch den Gammablitz sehen. Erfolgt die Beobachtung mit größerem Winkel zur Jetachse, so dass der Gammablitz selbst nicht sichtbar ist, dann erwartet man nach den Modellen eine Sauerstofflinie mit zwei Maxima. Weil der strahlend helle Gammablitz dann aber verborgen bleibt, können solche Explosionen in fernen Galaxien nicht leicht entdeckt werden. Mit einigen der weltweit größten Teleskope wurde daher ein besonderes Beobachtungsprogramm gestartet, um nach Typ Ic-Gammablitz-Supernovae zu suchen und durch Messung von der Strahlungsspektren die Vorhersagen zu überprüfen.

In der aktuellen Ausgabe der Fachzeitschrift "Science" berichten die Forscher um Paolo Mazzali nun über die jüngsten Beobachtungen der Supernova "2003jd" mit dem japanischen 8,2 Meter Subaru-Teleskop auf dem Mauna Kea auf Hawaii. Ungewöhnliche Doppelmaxima in den Spektrallinien des Lichts, welches das expandierende Supernovamaterial aussendet, weisen auf eine stark von der Kugelgestalt abweichende Explosion hin. Die Messungen mit dem Acht-Meter-Keck-Teleskop, das ebenfalls auf Hawaii steht und von einem Konsortium verschiedener US-amerikanischer Universitäten betrieben wird, haben die Annahme bestätigt.

Die Ergebnisse zeigen, dass Typ Ic-Supernovae auch stark asphärisch sein können. Die beobachtete Supernova "2003jd" ist extrem hell und weist zusätzlich weitere charakteristische Ähnlichkeiten mit der Supernova "1998bw" auf, von der ein Gammablitz beobachtet wurde. In Übereinstimmung mit dem theoretischen Modell hat die Sauerstofflinie bei der Supernova "1998bw" aber nur ein einziges scharfes Maximum. Die Messungen an der Supernova "2003jd" bestätigen damit die Vorstellung, dass kosmische Gammablitze beim Kollaps und der Explosion massereicher Sterne erzeugt werden. Im Fall der Supernova "2003jd" ist der Gasjet und der dadurch erzeugte Gammablitz aber nicht auf die Erde gerichtet gewesen und für uns daher unsichtbar geblieben.

Dr. Paolo Mazzali | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpa-garching.mpg.de
http://www.mpg.de

Weitere Berichte zu: Gammablitz Jets Supernova

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie