Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Radioblitze in der Atmosphäre

25.05.2005


Mit einem internationalen Experiment konnten Wissenschaftler im Forschungszentrum Karlsruhe die hellsten und kurzlebigsten Radioblitze am Himmel nachweisen



Im Rahmen des internationalen LOPES-Projektes wurden am Forschungszentrum Karlsruhe hochenergetische kosmische Teilchen mit Hilfe digitaler Radioantennen nachgewiesen. Die aus dem Universum in die Atmosphäre eindringenden Atomkerne erzeugen kurze, sehr intensive Radioblitze, die für wenige Nanosekunden die hellste Radioquelle am Himmel darstellen. Solche Radioblitze konnten Wissenschaftler nun durch Vergleich mit dem KASCADE-Grande-Experiment im Forschungszentrum Karlsruhe erstmals zweifelsfrei einzelnen Teilchen der hochenergetischen kosmischen Strahlung zuweisen. Dies ist ein Meilenstein bei der Entwicklung neuer Techniken zur Messung höchstenergetischer Teilchen im Universum. Die internationale Fachzeitschrift "Nature" hat die Forschungsergebnisse in ihrer neuesten Ausgabe veröffentlicht.

... mehr zu:
»LOFAR »Strahlung


Atomkerne der kosmischen Strahlung lösen beim Zusammenstoß mit der Erdatmosphäre große Schauer von Sekundärpartikeln aus, die in der Luft eine Leuchtspur erzeugen und als Teilchenteppich auf die Erdoberfläche vordringen. Detektorfelder wie das Pierre Auger-Observatorium in Argentinien oder das kleinere KASCADE-Grande-Experiment im Forschungszentrum können diese Teilchenschauer messen.

Seit rund 40 Jahren ist bekannt, dass die Teilchenschauer neben dem ultravioletten Fluoreszenzlicht in der Atmosphäre auch Strahlung im Radio-Frequenzbereich emittieren. Bisher war es technisch nicht möglich, das extrem kurze Signal von nur wenigen Milliardstel Sekunden Dauer vom allgegenwärtigen Strahlungs-Hintergrund zu trennen. Das neuartige digitale Radioteleskop LOFAR (Low-Frequency Array) soll diese Teilchenschauer sowie andere Signale aus dem Kosmos kontinuierlich in einem breiten Frequenzbereich aufnehmen und digital verarbeiten. In einigen Jahren wird LOFAR einen Großteil der Niederlande und von Nordrhein-Westfalen abdecken.

Eine internationale Kooperation von Wissenschaftlern hat nun einen Prototyp von LOFAR im Forschungszentrum Karlsruhe innerhalb des KASCADE-Grande-Messfeldes aufgebaut. Unter dem Akronym LOPES (LOFAR PrototypE Station) entstand ein Feld mit zehn Radioantennen, ähnlich denen, die auch in gewöhnlichen Radioempfängern zum Einsatz kommen. Die Antennen bilden einen breitbandigen Empfänger, der eine Vielzahl unterschiedlicher Frequenzen gleichzeitig aufnehmen kann und die Signale in eine digitale Elektronik speist.

Im parallelen Betrieb der LOPES-Antennen und des KASCADE-Grande-Messfeldes konnten die Wissenschaftler nun erstmals zeigen, dass hochenergetische Teilchen der kosmischen Strahlung, die in der Erdatmosphäre einen Teilchenschauer auslösen, gleichzeitig auch ein Radiosignal aus der Richtung des einfallenden Teilchens erzeugen. Die Stärke der Radiosignale ist proportional zur Energie dieses Teilchens und außerdem mit dem Winkel des ankommenden Teilchenschauers und der Richtung des Magnetfeldes der Erde korreliert.

"KASCADE-Grande und sein Vorläufer, das Experiment KASCADE, messen seit vielen Jahren im Forschungszentrum Karlsruhe Teilchenschauer der kosmischen Strahlung. Aus den Signalen können der Entstehungsort des Teilchenschauers in der Atmosphäre sowie die Energie und Art der einfallenden Teilchen ermittelt werden", erläutert Professor Dr. Johannes Blümer, Leiter des Instituts für Kernphysik des Forschungszentrums Karlsruhe. "Im Vergleich der Daten aus KASCADE-Grande mit LOPES konnten wir nun die Tauglichkeit der neuen Methode für die Messung kosmischer Strahlung zeigen. Radiodetektion kosmischer Strahlung birgt ein phantastisches Potenzial."

Die Ergebnisse wurden am 19. Mai 2005 in der wissenschaftlichen Fachzeitschrift Nature veröffentlicht (Falcke et al.: "Detection and localization of atmospheric radio flashes from cosmic air showers").

Zur Zeit wird das Antennenfeld in Karlsruhe von 10 auf 30 Antennen erweitert, um mit besserer Statistik vor allen Dingen bei höheren Energien das Radiosignal im Detail zu studieren. Das Forscherteam des LOPES-Projektes möchte mit den dann erzielten Ergebnissen einerseits die neue Messtechnik etablieren, andererseits die Emissionsmechanismen in der Atmosphäre verstehen und so den Weg zu einer verbesserten Messung der höchstenergetischen kosmischen Strahlung ebnen. Damit könnte das LOPES-Experiment einen wichtigen Beitrag für die Instrumentierung des zweiten Pierre Auger-Observatoriums auf der Nordhalbkugel sein, dessen Aufbau Forschergruppen weltweit vorbereiten.

Das LOPES-Projekt wird in internationaler Zusammenarbeit mit starker deutscher und niederländischer Beteiligung betrieben. Die Kollaboration umfasst neben der kompletten Beteiligung der KASCADE-Grande-Mitglieder mit 8 Instituten aus 4 Ländern (Institut für Kernphysik des Forschungszentrums Karlsruhe, Universitäten Karlsruhe, Siegen und Wuppertal aus Deutschland, Universität Turin und INFN Sektion Turin aus Italien, das Soltan Institut aus Lodz, Polen und IFIN-HH aus Bukarest, Rumänien) auch das Institut für Prozessdatenverarbeitung und Elektronik des Forschungszentrums Karlsruhe, das Max-Planck-Institut für Radioastronomie in Bonn, die Universität Nijmegen und die Forschungseinrichtung ASTRON (verantwortlich für den Aufbau von LOFAR) aus den Niederlanden.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Dr. Joachim Hoffmann | idw
Weitere Informationen:
http://www.fzk.de

Weitere Berichte zu: LOFAR Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten