Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Radioblitze in der Atmosphäre

25.05.2005


Mit einem internationalen Experiment konnten Wissenschaftler im Forschungszentrum Karlsruhe die hellsten und kurzlebigsten Radioblitze am Himmel nachweisen



Im Rahmen des internationalen LOPES-Projektes wurden am Forschungszentrum Karlsruhe hochenergetische kosmische Teilchen mit Hilfe digitaler Radioantennen nachgewiesen. Die aus dem Universum in die Atmosphäre eindringenden Atomkerne erzeugen kurze, sehr intensive Radioblitze, die für wenige Nanosekunden die hellste Radioquelle am Himmel darstellen. Solche Radioblitze konnten Wissenschaftler nun durch Vergleich mit dem KASCADE-Grande-Experiment im Forschungszentrum Karlsruhe erstmals zweifelsfrei einzelnen Teilchen der hochenergetischen kosmischen Strahlung zuweisen. Dies ist ein Meilenstein bei der Entwicklung neuer Techniken zur Messung höchstenergetischer Teilchen im Universum. Die internationale Fachzeitschrift "Nature" hat die Forschungsergebnisse in ihrer neuesten Ausgabe veröffentlicht.

... mehr zu:
»LOFAR »Strahlung


Atomkerne der kosmischen Strahlung lösen beim Zusammenstoß mit der Erdatmosphäre große Schauer von Sekundärpartikeln aus, die in der Luft eine Leuchtspur erzeugen und als Teilchenteppich auf die Erdoberfläche vordringen. Detektorfelder wie das Pierre Auger-Observatorium in Argentinien oder das kleinere KASCADE-Grande-Experiment im Forschungszentrum können diese Teilchenschauer messen.

Seit rund 40 Jahren ist bekannt, dass die Teilchenschauer neben dem ultravioletten Fluoreszenzlicht in der Atmosphäre auch Strahlung im Radio-Frequenzbereich emittieren. Bisher war es technisch nicht möglich, das extrem kurze Signal von nur wenigen Milliardstel Sekunden Dauer vom allgegenwärtigen Strahlungs-Hintergrund zu trennen. Das neuartige digitale Radioteleskop LOFAR (Low-Frequency Array) soll diese Teilchenschauer sowie andere Signale aus dem Kosmos kontinuierlich in einem breiten Frequenzbereich aufnehmen und digital verarbeiten. In einigen Jahren wird LOFAR einen Großteil der Niederlande und von Nordrhein-Westfalen abdecken.

Eine internationale Kooperation von Wissenschaftlern hat nun einen Prototyp von LOFAR im Forschungszentrum Karlsruhe innerhalb des KASCADE-Grande-Messfeldes aufgebaut. Unter dem Akronym LOPES (LOFAR PrototypE Station) entstand ein Feld mit zehn Radioantennen, ähnlich denen, die auch in gewöhnlichen Radioempfängern zum Einsatz kommen. Die Antennen bilden einen breitbandigen Empfänger, der eine Vielzahl unterschiedlicher Frequenzen gleichzeitig aufnehmen kann und die Signale in eine digitale Elektronik speist.

Im parallelen Betrieb der LOPES-Antennen und des KASCADE-Grande-Messfeldes konnten die Wissenschaftler nun erstmals zeigen, dass hochenergetische Teilchen der kosmischen Strahlung, die in der Erdatmosphäre einen Teilchenschauer auslösen, gleichzeitig auch ein Radiosignal aus der Richtung des einfallenden Teilchens erzeugen. Die Stärke der Radiosignale ist proportional zur Energie dieses Teilchens und außerdem mit dem Winkel des ankommenden Teilchenschauers und der Richtung des Magnetfeldes der Erde korreliert.

"KASCADE-Grande und sein Vorläufer, das Experiment KASCADE, messen seit vielen Jahren im Forschungszentrum Karlsruhe Teilchenschauer der kosmischen Strahlung. Aus den Signalen können der Entstehungsort des Teilchenschauers in der Atmosphäre sowie die Energie und Art der einfallenden Teilchen ermittelt werden", erläutert Professor Dr. Johannes Blümer, Leiter des Instituts für Kernphysik des Forschungszentrums Karlsruhe. "Im Vergleich der Daten aus KASCADE-Grande mit LOPES konnten wir nun die Tauglichkeit der neuen Methode für die Messung kosmischer Strahlung zeigen. Radiodetektion kosmischer Strahlung birgt ein phantastisches Potenzial."

Die Ergebnisse wurden am 19. Mai 2005 in der wissenschaftlichen Fachzeitschrift Nature veröffentlicht (Falcke et al.: "Detection and localization of atmospheric radio flashes from cosmic air showers").

Zur Zeit wird das Antennenfeld in Karlsruhe von 10 auf 30 Antennen erweitert, um mit besserer Statistik vor allen Dingen bei höheren Energien das Radiosignal im Detail zu studieren. Das Forscherteam des LOPES-Projektes möchte mit den dann erzielten Ergebnissen einerseits die neue Messtechnik etablieren, andererseits die Emissionsmechanismen in der Atmosphäre verstehen und so den Weg zu einer verbesserten Messung der höchstenergetischen kosmischen Strahlung ebnen. Damit könnte das LOPES-Experiment einen wichtigen Beitrag für die Instrumentierung des zweiten Pierre Auger-Observatoriums auf der Nordhalbkugel sein, dessen Aufbau Forschergruppen weltweit vorbereiten.

Das LOPES-Projekt wird in internationaler Zusammenarbeit mit starker deutscher und niederländischer Beteiligung betrieben. Die Kollaboration umfasst neben der kompletten Beteiligung der KASCADE-Grande-Mitglieder mit 8 Instituten aus 4 Ländern (Institut für Kernphysik des Forschungszentrums Karlsruhe, Universitäten Karlsruhe, Siegen und Wuppertal aus Deutschland, Universität Turin und INFN Sektion Turin aus Italien, das Soltan Institut aus Lodz, Polen und IFIN-HH aus Bukarest, Rumänien) auch das Institut für Prozessdatenverarbeitung und Elektronik des Forschungszentrums Karlsruhe, das Max-Planck-Institut für Radioastronomie in Bonn, die Universität Nijmegen und die Forschungseinrichtung ASTRON (verantwortlich für den Aufbau von LOFAR) aus den Niederlanden.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Dr. Joachim Hoffmann | idw
Weitere Informationen:
http://www.fzk.de

Weitere Berichte zu: LOFAR Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics