Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NEST-"Wärme" für TU-Forschergruppe

23.05.2005


Peter Schattschneider und Cécile Hébert, beide Physiker an der Technischen Universität Wien, haben kürzlich ihre Kollegen mit der Behauptung überrascht, dass Zirkulardichroismus in einem handelsüblichen Transmissionselektronenmikroskop beobachtet werden kann. Bisher hatte man angenommen, dass das - wenn überhaupt - nur mit einem Strahl spinpolarisierter Elektronen möglich ist. Für die Praxis bedeutet diese Forschungssensation, dass ein neuer Weg zur Darstellung magnetischer Strukturen von Oberflächen und dünnen Schichten im Nanometerbereich beschritten werden kann. Noch dazu im Vergleich zu herkömmlichen Methoden wesentlich kostengünstiger.



Die Ausgangslage



X-Ray Magnetic Circular Dichroism (XMCD) ist eine in den 80er-Jahren entwickelte Methode zur Untersuchung magnetischer Eigenschaften. Dabei wird ein zirkular polarisierter Röntgenstrahl in dem untersuchten Material entsprechend der Richtung des Magnetfeldes unterschiedlich absorbiert. Das XMCD-Verfahren hat aber zwei schwerwiegende Nachteile: die Auflösung ist für die Analyse moderner nanostrukturierter Bauteile nicht gut genug, und man braucht ein Synchrotron - eine großtechnische Anlage, von denen es weltweit nur sehr wenige gibt.

Auswege dank Energy Loss Magnetic Chiral Dichroism im EU-NEST-Programm

Peter Schattschneider und Cécile Hébert, beide am Institut für Festkörperphysik der TU Wien, waren davon überzeugt, dass man den gleichen Effekt auch mit einem Transmissionselektronenmikroskop (TEM) erzielen kann. Sie werden diese neue Methode im Projekt CHIRALTEM untersuchen. Das ist ein in der Projektschiene "Neue und sich abzeichnende wissenschaftliche und technologische Entwicklungen" (NEST) laufendes "high-risk"-Forschungsprojekt im 6. EU-Rahmenprogramm.

Ziel der EU-NEST-Förderung ist die unkonventionelle und visionäre Forschung, die der europäischen Wissenschaft und Technologie den Zugang zu den Forschungsfeldern von morgen eröffnet. Darüber hinaus sollen Forschungsvorhaben unterstützt werden, die sich mit bisher unbekannten oder neuartigen Risikopotenzialen und Gefahren für die Gesellschaft befassen. Projekte sollen gewagt sein, daher "high risk", das Forschungsziel nicht zu erreichen. NEST ist auf Flexibilität ausgelegt. Interdisziplinäre Forschungsvorhaben sind daher besonders willkommen.

"Know-how gepaart mit Intuition, und das mit einfachen Mitteln", so die Antwort Schattschneiders auf die Frage, wie es zum Durchbruch kam. "Wir hatten die Umsetzung der Forschungsidee im Kopf. Eine kurze Rechnung zeigte, dass es möglich sein sollte, aber das Experiment konnten wir noch nicht durchführen".

Gute Voraussetzungen also für die Akzeptanz als EU-NEST-Projekt - eine originelle Idee und eine riskante Umsetzung. Die EU-Statistik zeigt außerdem ein weiteres Risikopotential in der Antragsphase: die Erfolgsquote bewilligter Projekte lag im ersten NEST-call bei 6 Prozent (!).

10 Mal kleinere magnetische Strukturen werden erkennbar sein

Ist das neue Verfahren, das von seinen Wiener Entdeckern "Energy Loss Magnetic Chiral Dichroism (EMCD)" getauft wurde, erfolgreich, werden sich 10 Mal kleinere magnetische Strukturen erkennen lassen, als das mit den derzeit besten Röntgenstrahl-Verfahren möglich ist. Aufgrund ihrer technologischen Beschaffenheit - mit Transmissionselektronenmikroskopen (TEM) können bis zu 100 Nanometer "dicke" Materialien mit atomarer Auflösung untersucht werden - eignet sich die Methode vor allem für die Analyse magnetischer Filme. Ist das Know-How für den experimentellen Aufbau einmal vorhanden, können neben den magnetischen auch die morphologischen, kristallographischen und chemischen Eigenschaften einer Probe im Transmissionselektronenmikroskop gewissermaßen in einem Durchgang untersucht werden.

Nach 10 Monaten erfolgreich

Für manche WissenschafterInnen erstaunlich, ist es dem Forscherteam bereits nach 10 Monaten gelungen, ihre Voraussage experimentell nachzuweisen. Dadurch eröffnen sich weitere Forschungsperspektiven in der Nanotechnologie, insbesondere im Zusammenhang mit "Spintronics". Das ist jene sehr junge Technologie, die sich sowohl die magnetischen Eigenschaften von Elektronen ("Spin") als auch ihre elektrischen Ladungen zunutze macht. Diese Technologie wird bereits in Schreib- und Leseköpfen von Magnetplatten eingesetzt, und sie wird in den nächsten Jahren voraussichtlich eine Schlüsselrolle in der Sensorik, Telekommunikation und Informationsverarbeitung spielen.
Auch in der Biologie und Biotechnologie könnte die neue Methode wichtige Impulse liefern, z. B. bei der Untersuchung magnetotaktischer Bakterien oder bei der Klärung offener Fragen beim magnetischen "Kompass"-Gefühl der Tauben.

Gemeinsam zum Ziel

Die erste Aufgabe des EU-Projekts CHIRALTEM (Chiral dichroism in the transmission electron microscope) - Laufzeit 36 Monate, Start war im Juli 2004, Projektvolumen Euro 890.000,- bestand darin, Zirkulardichroismus im TEM experimentell nachzuweisen. Die Wiener Gruppe verwendete dazu einfache ferromagnetische Materialien (Eisen und Nickel). Nachdem der Nachweis des Effekts gelungen ist, wird jetzt getestet, wie das Experiment optimiert werden kann. Danach ist geplant, hartmagnetische Materialien und nanostrukturierte Bauteile, wie sie für "Spinvalves" verwendet werden, zu untersuchen.

Die Forschergruppe in Regensburg erforscht zeitgleich, wie man die Materialproben vorbereiten und die Magnetfelder im Mikroskop kontrollieren kann, während das Team in Prag vergleichende Computersimulationen durchführt. Die Gruppe in Dresden studiert einen alternativen experimentellen Aufbau, der möglicherweise Vorteile bietet.

Die Kollegen in Triest haben inzwischen Experimente am Synchrotron durchgeführt, um beide Methoden miteinander vergleichen zu können. Durch die Kombination zweier Techniken erwartet sich das Team einen enormen Synergieeffekt. Eines der Projektziele ist es dann auch, den wissenschaftlichen Kontakt zwischen zwei bisher nur schwach kommunizierenden Forschungsrichtungen - Elektronenmikroskopie und Synchrotron - zu verstärken.

Rückfragehinweis:
Univ.Prof. Dipl.-Ing. Dr. Mag. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hptstr. 8-10, A-1040 Wien
Tel.: +43-1-58801x13722
Fax: +43-1-58801-13798
E-Mail schattschneider@ifp.tuwien.ac.at

Mag. Karin Peter | idw
Weitere Informationen:
http://www.tuwien.ac.at
http://www.chiraltem.physics.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie