Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hellstes Leuchten aus dunklen Quellen

19.05.2005


Max-Planck-Forscher bringen Licht in die Welt ultrahochenergetischer kosmischer Teilchen


Volltreffer: Der helle Fleck in der Mitte zeigt einen Radioblitz, nachdem das LOPES-Experiment ein Partikel der kosmischen Strahlung aufgefangen hat. Die hierzu gehörige Filmsequenz verläuft über 100 Nanosekunden, in denen der Radioblitz für etwa 30 Nanosekunden aufscheint. Die grünen Linien sind nachträglich eingefügte Himmelskoordinaten. Bild: Nature



Hätte der Mensch Augen für Radiostrahlung, würde er beim Blick in den Himmel von Zeit zu Zeit geblendet: durch Blitze, die zwar ungemein kurz dauern, doch auf der vierfachen Fläche des Vollmonds etwa 1000fach heller aufleuchten als die Sonne. Diese Radioblitze zeugen vom Aufprall extrem energiereicher Partikel der kosmischen Strahlung auf Atome und Moleküle der Erdatmosphäre. Sie stammen von den Schauern subatomarer Trümmerteilchen aus Materie und Antimaterie, die bei solchen Kollisionen entstehen. Nachgewiesen wurden diese Blitze kürzlich von einem internationalen Team, darunter Astrophysiker des Bonner Max-Planck-Instituts für Radioastronomie. Weitere Beobachtungen sollen nun die Herkunft der rätselhaften ultrahochenergetischen Teilchenstrahlung aus dem Kosmos erhellen (Nature, 19. Mai 2005).



Die Wissenschaftler benutzten für ihre Entdeckung eine Batterie von Radioantennen und das große Feld von Teilchendetektoren des KASCADE-Grande-Experiments am Forschungszentrum Karlsruhe. Beide Detektorfelder wurden parallel betrieben. Auf diese Weise ließ sich jedes Mal, wenn ein hochenergetisches Teilchen der kosmischen Strahlung auf die Erdatmosphäre traf, ein Radiosignal nachweisen. Mit Bildverarbeitungsprogrammen aus der Radioastronomie erstellten die Forscher außerdem digitale Filmsequenzen von diesen Ereignissen.

Die Stärke der ausgestrahlten Radiosignals ist direkt proportional zur Energie der kosmischen Strahlung. "Es erstaunt schon, dass wir mit einfachen Antennen direkt die Energie von Elementarteilchen aus dem Kosmos messen können", sagt LOPES-Sprecher Heino Falcke von der Netherlands Foundation for Research in Astronomy (ASTRON). "Wenn wir empfindliche Radioaugen hätten, könnten wir den Himmel mit Radioblitzen funkeln sehen."

Einige der aufgezeichneten Radioblitze müssten in der Tat stark genug sein, um den konventionellen Radio- und Fernsehempfang für einen kurzen Zeitraum zu überstrahlen. Um diesen Effekt zu verdeutlichen, haben die Forscher das Signal der kosmischen Strahlung in ein Tondokument umgewandelt. Da jedoch die Radioblitze aus dem All nur jeweils 20 bis 30 Nanosekunden (milliardstel Sekunden) dauern, und weil die stärksten Ereignisse dieser Art im Mittel lediglich einmal pro Tag stattfinden, dürften sie sich kaum auf unseren Alltag auswirken.

Das Experiment hat außerdem gezeigt, dass die Intensität der Radiostrahlung von der jeweiligen Ausrichtung des Magnetfelds der Erde abhängt. Dieses Ergebnis und auch andere Resultate der Messungen bestätigen die Vorhersagen früherer theoretischer Rechnungen von Heino Falcke und seinem Doktoranden Tim Huege sowie von Peter Gorham, Universität Hawaii.

Energiereiche Teilchen der kosmischen Strahlung bombardieren die Erdatmosphäre und verursachen dort winzige Explosionen von Elementarteilchen - die ihrerseits einen Strahl von Materie- und Antimaterieteilchen bilden. Das geomagnetische Feld lenkt die leichtesten der geladenen Partikel (Elektronen und Positronen) ab, und dabei entsteht Radiostrahlung. Es ist der gleiche Mechanismus wie bei der mit Teilchenbeschleunigern in irdischen Labors erzeugten Synchrotronstrahlung. Analog dazu sprechen Astrophysiker von Geosynchrotronstrahlung und betonen so die Wechselwirkung mit dem Magnetfeld der Erde.

LOPES steht für "LOFAR Prototyp Experimental Station". Die Anlage arbeitet mit Prototyp-Antennen des demnächst größten Radioteleskops der Erde (LOFAR). Vom Jahr 2006 an wird das Teleskop in den Niederlanden und einem Teil von Deutschland errichtet werden. Die LOPES-Empfänger sind einfache Antennenpaare - ganz ähnlich denen, die in gewöhnlichen Radioempfängern zum Einsatz kommen. "Der Hauptunterschied zu normalen Radios liegt in der digitalen Elektronik und in den breitbandigen Empfängern, die es uns ermöglichen, eine Vielzahl unterschiedlicher Frequenzen gleichzeitig aufzunehmen", sagt Andreas Horneffer, Doktorand der International Max Planck Research School for Radio and Infrared Astronomy an der Universität Bonn. Horneffer hat die Antennen als Teil seines Promotions-Projekts gebaut.

Die LOPES-Antennen sind in das KASCADE-Grande-Experiment zum Nachweis von Luftschauern der kosmischen Strahlung integriert. "Das zeigt den Vorteil eines größeren Experiments der Astroteilchenphysik in unserer direkten Nachbarschaft. Es gibt uns die Flexibilität, auch ungewöhnliche Ideen wie diese zu erforschen", sagt Andreas Haungs, Sprecher des KASCADE-Grande Experiments. Und Harvey Butcher, Direktor der Netherlands Foundation for Research in Astronomy in Dwingeloo, ergänzt: "LOPES nimmt erste größere wissenschaftliche Ergebnisse des LOFAR-Projekts bereits in der Entwicklungsphase vorweg. Das stimmt uns zuversichtlich, dass LOFAR in der Tat so revolutionär herauskommen wird, wie wir uns das erhofft haben."

LOFAR verbindet ein komplett neuartiges Design mit einer Vielzahl von billigen Niederfrequenzantennen, die Radiosignale aus jeder Richtung des Himmels gleichzeitig aufnehmen können. Die einzelnen Stationen sind über ein Hochgeschwindigkeits-Internet verbunden, und mittels eines Supercomputers können ungewöhnliche Signale entdeckt und Radiobilder ausgedehnter Regionen des Himmels erstellt werden, ohne auch nur ein mechanisches Teil zu bewegen. "Es stellt in der Tat eine ungewöhnliche Kombination dar, wenn Kernphysiker und Radioastronomen zusammenarbeiten, um ein einzigartiges Experiment der Astroteilchenphysik auf die Beine zu stellen", sagt Anton Zensus, leitender Direktor am Bonner Max-Planck-Institut für Radioastronomie.

Prof. Heino Falcke | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.astron.nl
http://www.mpg.de

Weitere Berichte zu: Erdatmosphäre Radioblitze Radiostrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics