Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach Relikten des Urknalls

15.04.2005


Forscher der Max-Planck-Institute für extraterrestrische Physik und für Physik suchen nach einem neuartigen Elementarteilchen, dem Axion



Wissenschaftler der Max-Planck-Institute für Physik in München und für extraterrestrische Physik in Garching suchen am Europäischen Forschungszentrum CERN in Genf im Rahmen des internationalen Experiments CAST (CERN Axion Solar Telescope) nach Axionen. Diese theoretisch vorhergesagten, elektrisch neutralen Elementarteilchen könnten als Relikte des Urknalls bis heute in der rätselhaften Dunklen Materie, die den Forschern zur theoretischen Erklärung von Masseverteilungen und Bewegungen im Universum dient, überlebt haben.

... mehr zu:
»Axion »CERN »Elementarteilchen »Relikt »Urknalls


Bis jetzt ist die Existenz von Axionen im Weltall nur eine theoretische Vermutung. Doch die elektrisch neutralen Elementarteilchen könnten helfen, ein Rätsel zu lösen, das das Neutron, der elektrisch neutrale Baustein der Atomkerne, den Physikern aufgibt. Das Neutron besteht aus positiv und negativ geladenen Quarks und zeigt im Experiment auch eine messbare räumliche Verteilung seiner Ladung. Dabei fallen die positiven und negativen Ladungsschwerpunkte exakt aufeinander, sodass das elektrische Dipolmoment verschwindet. Dies Verhalten ist im Rahmen der gängigen Theorie der Kernkräfte bis heute nicht verstanden.

Doch die Suche nach den Elementarteilchen gestaltet sich schwierig. Denn die Axionen, wie sie die Physiker jetzt im CAST-Experiment suchen, reagieren kaum mit herkömmlicher Materie. Man spricht daher auch vom "unsichtbaren Axion". Die Physiker vermuten, dass Axionen sehr langlebig sind und deshalb als Relikt des Urknalls bis heute in der rätselhaften ‚Dunklen Materie’ überlebt haben könnten. Falls es Axionen gibt, könnte die Sonne eine sehr starke Quelle für sie sein. In ihrem 17 Millionen Grad heißen Inneren könnten Photonen zu Axionen konvertieren. Diese solaren Axionen gelangen - wie die Sonnenneutrinos - ungehindert zur Erde und könnten hier durch Umgekehrung des Erzeugungsprozesses in der Sonne in einem starken Magnetfeld in nachweisbare Röntgenstrahlung zurückverwandelt werden.

Mit ihren Experimenten am CERN wollen die Forscher nun diese Röntgenstrahlung, die womöglich durch die Axionen hervorgerufen wird, aus der gesamten Röntgenstrahlung, die die Detektoren im CAST-Experiment aus anderen Quellen wie der Höhenstrahlung oder der Gammastrahlung der Umgebung erreicht, herausfiltern. Dazu betreibt die CAST-Kollaboration seit dem Jahr 2003 am CERN ein hochempfindliches magnetisches Helioskop für den Axion-Nachweis. Das Helioskop ist schwenkbar montiert und folgt der Sonne täglich für jeweils etwa 90 Minuten während des Sonnenauf- und -untergangs. Während der restlichen Zeit zeichnen die drei unabhängigen Nachweissysteme von CAST Hintergrunddaten auf. Dieser Detektor wurde zu großen Teilen aus Instrumenten aus anderen Anwendungen aufgebaut. Das erforderliche starke Magnetfeld (9 Tesla) wird von einem 10 m langen supraleitenden Magneten erzeugt, der als Prototyp für die Ablenkmagnete des künftigen Protonen-Beschleunigers LHC (Large Hadron Collider) am CERN gedient hatte. Der Beitrag der beiden Max-Planck-Institute ist ein fokussierendes Teleskop für Röntgenstrahlung, das für eine Satellitenmission in der Röntgen-Astrophysik entwickelt wurde. Durch streifende Reflexion an ineinandergeschachtelten Spiegelflächen wird die aus Richtung der Sonne durch die Magnetöffnung austretende Röntgenstrahlung auf einen wenige Qudratmillimeter kleinen Brennfleck fokussiert. Zum Nachweis der Röntgenstrahlung dient ein am Halbleiterlabor der MPG entwickelter CCD-Detektor hoher Auflösung und Nachweiseffizienz. Der gleiche Detektor ist bereits seit einigen Jahren in der Röntgen-Satellitenmission XMM-Newton erfolgreich im Einsatz.

Erste Ergebnisse der Messungen aus dem Jahre 2003 haben die Physiker bereits veröffentlicht. Die Ergebnisse zeigen kein Signal für solare Axionen, das aus der Röntgenstrahlung herausgefiltert werden konnte. Doch mit ihren Experimenten können die Wissenschaftler bereits angeben, wie groß die Wahrscheinlichkeit für die Umwandlung von Photonen in Axionen in der Sonne und deren Umkehrung in unserem Magneten höchstens sein kann. Diese Wahrscheinlichkeit wird durch die "Kopplungsstärke" beschrieben.

Auch für die Lebensdauer von sehr alten Sternen könnte die Existenz von Axionen eine wichtige Rolle spielen: Falls es die Elementarteilchen nämlich gibt und in einem Stern, etwa wie der Sonne, produziert werden, verlassen sie diesen wegen ihrer geringen Wechselwirkung mit der Sternmaterie ungehindert. Das führt zu einem zusätzlichen Energieverlust, und die Lebensdauer des Sterns würde verringert. Aus der Tatsache, dass sehr alte Sterne existieren, kann wieder eine Obergrenze für die "Kopplungsstärke" gewonnen werden.

In weiteren Experimenten wird die CAST-Kollaboration ab Ende diesen Jahres die Suche nach solaren Axionen zu größeren Massen hin ausdehnen. Hier besteht aufgrund der hohen Nachweisempfindlichkeit des CAST-Experiments die Möglichkeit, Vorhersagen theoretischer Modelle für die Stärke der Wechselwirkung des Axions zu überprüfen, und die Hoffnung, dieses für die fundamentalen Fragen der Kernkräfte und der Natur der "Dunklen Materie" so bedeutsame Teilchen doch noch aufzuspüren.

Dr. Rainer Kotthaus | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mppmu.mpg.de
http://www.mpg.de

Weitere Berichte zu: Axion CERN Elementarteilchen Relikt Urknalls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie