Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach Relikten des Urknalls

15.04.2005


Forscher der Max-Planck-Institute für extraterrestrische Physik und für Physik suchen nach einem neuartigen Elementarteilchen, dem Axion



Wissenschaftler der Max-Planck-Institute für Physik in München und für extraterrestrische Physik in Garching suchen am Europäischen Forschungszentrum CERN in Genf im Rahmen des internationalen Experiments CAST (CERN Axion Solar Telescope) nach Axionen. Diese theoretisch vorhergesagten, elektrisch neutralen Elementarteilchen könnten als Relikte des Urknalls bis heute in der rätselhaften Dunklen Materie, die den Forschern zur theoretischen Erklärung von Masseverteilungen und Bewegungen im Universum dient, überlebt haben.

... mehr zu:
»Axion »CERN »Elementarteilchen »Relikt »Urknalls


Bis jetzt ist die Existenz von Axionen im Weltall nur eine theoretische Vermutung. Doch die elektrisch neutralen Elementarteilchen könnten helfen, ein Rätsel zu lösen, das das Neutron, der elektrisch neutrale Baustein der Atomkerne, den Physikern aufgibt. Das Neutron besteht aus positiv und negativ geladenen Quarks und zeigt im Experiment auch eine messbare räumliche Verteilung seiner Ladung. Dabei fallen die positiven und negativen Ladungsschwerpunkte exakt aufeinander, sodass das elektrische Dipolmoment verschwindet. Dies Verhalten ist im Rahmen der gängigen Theorie der Kernkräfte bis heute nicht verstanden.

Doch die Suche nach den Elementarteilchen gestaltet sich schwierig. Denn die Axionen, wie sie die Physiker jetzt im CAST-Experiment suchen, reagieren kaum mit herkömmlicher Materie. Man spricht daher auch vom "unsichtbaren Axion". Die Physiker vermuten, dass Axionen sehr langlebig sind und deshalb als Relikt des Urknalls bis heute in der rätselhaften ‚Dunklen Materie’ überlebt haben könnten. Falls es Axionen gibt, könnte die Sonne eine sehr starke Quelle für sie sein. In ihrem 17 Millionen Grad heißen Inneren könnten Photonen zu Axionen konvertieren. Diese solaren Axionen gelangen - wie die Sonnenneutrinos - ungehindert zur Erde und könnten hier durch Umgekehrung des Erzeugungsprozesses in der Sonne in einem starken Magnetfeld in nachweisbare Röntgenstrahlung zurückverwandelt werden.

Mit ihren Experimenten am CERN wollen die Forscher nun diese Röntgenstrahlung, die womöglich durch die Axionen hervorgerufen wird, aus der gesamten Röntgenstrahlung, die die Detektoren im CAST-Experiment aus anderen Quellen wie der Höhenstrahlung oder der Gammastrahlung der Umgebung erreicht, herausfiltern. Dazu betreibt die CAST-Kollaboration seit dem Jahr 2003 am CERN ein hochempfindliches magnetisches Helioskop für den Axion-Nachweis. Das Helioskop ist schwenkbar montiert und folgt der Sonne täglich für jeweils etwa 90 Minuten während des Sonnenauf- und -untergangs. Während der restlichen Zeit zeichnen die drei unabhängigen Nachweissysteme von CAST Hintergrunddaten auf. Dieser Detektor wurde zu großen Teilen aus Instrumenten aus anderen Anwendungen aufgebaut. Das erforderliche starke Magnetfeld (9 Tesla) wird von einem 10 m langen supraleitenden Magneten erzeugt, der als Prototyp für die Ablenkmagnete des künftigen Protonen-Beschleunigers LHC (Large Hadron Collider) am CERN gedient hatte. Der Beitrag der beiden Max-Planck-Institute ist ein fokussierendes Teleskop für Röntgenstrahlung, das für eine Satellitenmission in der Röntgen-Astrophysik entwickelt wurde. Durch streifende Reflexion an ineinandergeschachtelten Spiegelflächen wird die aus Richtung der Sonne durch die Magnetöffnung austretende Röntgenstrahlung auf einen wenige Qudratmillimeter kleinen Brennfleck fokussiert. Zum Nachweis der Röntgenstrahlung dient ein am Halbleiterlabor der MPG entwickelter CCD-Detektor hoher Auflösung und Nachweiseffizienz. Der gleiche Detektor ist bereits seit einigen Jahren in der Röntgen-Satellitenmission XMM-Newton erfolgreich im Einsatz.

Erste Ergebnisse der Messungen aus dem Jahre 2003 haben die Physiker bereits veröffentlicht. Die Ergebnisse zeigen kein Signal für solare Axionen, das aus der Röntgenstrahlung herausgefiltert werden konnte. Doch mit ihren Experimenten können die Wissenschaftler bereits angeben, wie groß die Wahrscheinlichkeit für die Umwandlung von Photonen in Axionen in der Sonne und deren Umkehrung in unserem Magneten höchstens sein kann. Diese Wahrscheinlichkeit wird durch die "Kopplungsstärke" beschrieben.

Auch für die Lebensdauer von sehr alten Sternen könnte die Existenz von Axionen eine wichtige Rolle spielen: Falls es die Elementarteilchen nämlich gibt und in einem Stern, etwa wie der Sonne, produziert werden, verlassen sie diesen wegen ihrer geringen Wechselwirkung mit der Sternmaterie ungehindert. Das führt zu einem zusätzlichen Energieverlust, und die Lebensdauer des Sterns würde verringert. Aus der Tatsache, dass sehr alte Sterne existieren, kann wieder eine Obergrenze für die "Kopplungsstärke" gewonnen werden.

In weiteren Experimenten wird die CAST-Kollaboration ab Ende diesen Jahres die Suche nach solaren Axionen zu größeren Massen hin ausdehnen. Hier besteht aufgrund der hohen Nachweisempfindlichkeit des CAST-Experiments die Möglichkeit, Vorhersagen theoretischer Modelle für die Stärke der Wechselwirkung des Axions zu überprüfen, und die Hoffnung, dieses für die fundamentalen Fragen der Kernkräfte und der Natur der "Dunklen Materie" so bedeutsame Teilchen doch noch aufzuspüren.

Dr. Rainer Kotthaus | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mppmu.mpg.de
http://www.mpg.de

Weitere Berichte zu: Axion CERN Elementarteilchen Relikt Urknalls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie