Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorstoß in unsichtbare Bereiche

11.04.2005


Die Terahertz-Strahlung liegt auf dem elektromagnetischen Spektrum zwischen den langwelligen Radio- und Mikrowellen und dem unsichtbaren Infrarotbereich, der sich direkt an die dem menschlichen Auge noch sichtbare Farbe Rot anschließt. Als Gegenstand der Forschung ist der Terahertz-Bereich sehr vielversprechend, doch fehlten bislang die entsprechenden Geräte zur einfachen Erzeugung der Strahlung. Im Forschungszentrum Rossendorf wurde deshalb kürzlich eine Terahertz-Strahlungsquelle entwickelt und zum Patent angemeldet, die mit Hilfe eines intelligenten Tricks alle Schwachstellen der bisher vorgestellten Lösungsansätze umgeht. Die Firma Gigaoptics GmbH in Konstanz übernimmt den Vertrieb der Strahlungsquelle.



Ein Terahertz entspricht einer Billion Schwingungen in der Sekunde. Es handelt sich um für den Menschen ungefährliche Wärmestrahlung in einem Frequenzbereich von 300 Gigahertz (GHz) bis 30 Terahertz (THz). Die Anwendungsmöglichkeiten der Strahlung in der medizinischen oder biologischen Analytik und in der Materialforschung stehen zwar erst am Anfang, werden aber dennoch als äußerst vielversprechend eingeschätzt. So könnten THz-Strahlen die Röntgenbehandlung beim Arzt zum Teil ersetzen, etwa bei der Kariesdiagnostik. Die Strahlen durchdringen Kleidung oder Gewebe quasi ohne Mühe und könnten so in Zukunft Blicke auf das Frühstadium von Karies oder Hautkrebs bzw. in das Innere von Zellen erlauben. Im Forschungszentrum Rossendorf wird die THz-Strahlung vor allem für die Untersuchung von Halbleiter-Materialien genutzt. Hierbei interessiert man sich besonders für die Dynamik der Elektronen, um damit die Grundlagen für komplexe Halbleiterstrukturen besser verstehen zu können und auf dieser Grundlage neue Bauelemente zu entwickeln.



Der Nachteil der Strahlung - sie lässt sich heute noch nicht einfach und günstig erzeugen. Hinzu kommt, dass die erzeugte Strahlung i. d. R. nicht intensiv genug ist für den Einsatz in der modernen Forschung. Man spricht daher regelrecht von einer Lücke, der Terahertz-Lücke. Weltweit arbeiten Forschergruppen daran, diese Lücke zu überwinden. Die Strahlungsquelle soll intensives "Licht" in einem breiten Frequenzbereich aussenden und gleichzeitig kostengünstig sein. Zwei verschiedene Ansätze werden derzeit verfolgt. Beim ersten Ansatz überlagern sich zwei Laser mit unterschiedlichen Frequenzen und sollen so in einem mit Elektroden präparierten Halbleiter kontinuierliche THz-Strahlung erzeugen. Der zweite Ansatz setzt auf superkurze Laserpulse, die ebenfalls auf einen Halbleiter gerichtet werden. Durch die Lichtpulse werden Elektronen im Halbleiter erzeugt, die im elektrischen Feld zwischen zwei auf dem Halbleiter angebrachten Elektroden beschleunigt werden und so THz-Strahlung aussenden.

Die Erfindung im Forschungszentrum Rossendorf geht auf diesen zweiten Ansatz zurück und verbessert die bisher vorhandenen Lösungsmöglichkeiten erheblich. Setzt man die Elektroden auf dem besonderen Halbleitermaterial Galliumarsenid nämlich weit voneinander entfernt (im Zentimeterbereich), um eine große aktive Fläche zur THz-Erzeugung zu erhalten, benötigt man eine Spannung im Kilovolt-Bereich. Damit wäre solch eine Strahlungsquelle für die Anwendung im Labor viel zu unpraktikabel. Setzt man die Elektroden dagegen nah (im Mikrometerbereich), hat man zwar einerseits die erforderliche elektrische Spannung im Griff, reduziert die aktive Fläche jedoch gleichzeitig so, dass die Intensität des erzeugten "Lichts" für die Anwendung nicht ausreichend ist.

Die Rossendorfer Physiker um Prof. Thomas Dekorsy (jetzt Universität Konstanz) und Dr. Stephan Winnerl hatten eine simple, aber äußerst wirkungsvolle Idee. Sie stellten eine Elektrodenstruktur auf der Galliumarsenid-Scheibe (Wafer) her, die fingerartig ineinander greift. Die Abstände der "Finger" betragen jeweils etwa 5 Mikrometer und die Struktur insgesamt hat derzeit eine aktive Fläche von etwa 1 cm2. Ohne einen zweiten technologischen Trick kommt es allerdings nicht zur Aussendung von THz-Strahlung, denn es geschieht zunächst Folgendes: das elektrische Feld wechselt von Zwischenraum zu Zwischenraum die Richtung, so dass die durch die Laserpulse im Halbleitermaterial erzeugten Elektronen in entgegengesetzte Richtungen beschleunigt werden und die ausgesandte Strahlung sich im Ergebnis durch die entstehenden Interferenzen wieder auslöscht. Hier greift nun der folgende Trick: jeder zweite "Finger" auf der Halbleiter-Scheibe wird nachträglich mit einer zweiten Maske zugedeckt. So wird jeder zweite Spalt inaktiv und die Interferenz der ausgesandten Strahlung ist im Ergebnis konstruktiv.

Dr. Stephan Winnerl erläutert: "Die von uns erzeugte Terahertz-Strahlung ist kohärent - eine Eigenschaft, die beispielsweise jedes Laserlicht auszeichnet - und deckt einen Frequenzbereich von 0,5 bis zu 3 Terahertz ab. Damit haben wir ein sehr sensitives Messgerät an der Hand, mit dem wir beispielsweise Schichtstrukturen von Halbleitern in ganz neuem Licht betrachten können. Halbleiter können, jeweils abhängig von bestimmten Strukturen und Schichten, komplexe elektronische Eigenschaften annehmen. Die Terahertz-Strahlung ist zur Untersuchung dieser Eigenschaften ideal geeignet."

Weitere Vorteile der Rossendorfer Erfindung liegen in der Skalierbarkeit der aktiven Fläche und in der Möglichkeit für den Anwender, den Strahldurchmesser für seine jeweiligen Forschungen flexibel einstellen zu können. Dies ist ein wichtiges Kriterium u. a. für die Nutzung der THz-Strahlung als bildgebendes Verfahren für bio-medizinische Fragestellungen. Die Erfindung ist zum Patent angemeldet und in der renommierten Fachzeitschrift Applied Physics Letters vor kurzem veröffentlicht worden (*). Die Konstanzer Firma Gigaoptics GmbH wird die THz-Strahlungsquelle vertreiben und erstmals auf der weltweit größten Fachmesse zur Optoelektronik im Mai in Baltimore, USA, einem internationalen Publikum vorstellen.

Ansprechpartner:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3522; Email: s.winnerl@fz-rossendorf.de
(*) Artikel in: Applied Physics Letters 86, 121114 (2005).

Information:
Das Forschungszentrum Rossendorf (FZR) betreibt Grundlagen- und anwendungsorientierte Forschung mit Photonen- und Teilchenstrahlen, wobei
· die Erforschung der Materie auf der Skala von Nanometern,
· der Schutz von Mensch und Umwelt vor technischen Risiken und
· der Einsatz bei Tumor- und Stoffwechselerkrankungen
den Schwerpunkt bilden. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZR ist mit ca. 550 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 56 Mill. Euro. Hinzu kommen etwa 6 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Pressekontakt:
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Fax: 0351 260 - 2700
c.bohnet@fz-rossendorf.de
Postanschrift: Postfach 51 01 19 . 01314 Dresden
Besucheranschrift: Bautzner Landstraße 128 . 01328 Dresden

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics