Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorstoß in unsichtbare Bereiche

11.04.2005


Die Terahertz-Strahlung liegt auf dem elektromagnetischen Spektrum zwischen den langwelligen Radio- und Mikrowellen und dem unsichtbaren Infrarotbereich, der sich direkt an die dem menschlichen Auge noch sichtbare Farbe Rot anschließt. Als Gegenstand der Forschung ist der Terahertz-Bereich sehr vielversprechend, doch fehlten bislang die entsprechenden Geräte zur einfachen Erzeugung der Strahlung. Im Forschungszentrum Rossendorf wurde deshalb kürzlich eine Terahertz-Strahlungsquelle entwickelt und zum Patent angemeldet, die mit Hilfe eines intelligenten Tricks alle Schwachstellen der bisher vorgestellten Lösungsansätze umgeht. Die Firma Gigaoptics GmbH in Konstanz übernimmt den Vertrieb der Strahlungsquelle.



Ein Terahertz entspricht einer Billion Schwingungen in der Sekunde. Es handelt sich um für den Menschen ungefährliche Wärmestrahlung in einem Frequenzbereich von 300 Gigahertz (GHz) bis 30 Terahertz (THz). Die Anwendungsmöglichkeiten der Strahlung in der medizinischen oder biologischen Analytik und in der Materialforschung stehen zwar erst am Anfang, werden aber dennoch als äußerst vielversprechend eingeschätzt. So könnten THz-Strahlen die Röntgenbehandlung beim Arzt zum Teil ersetzen, etwa bei der Kariesdiagnostik. Die Strahlen durchdringen Kleidung oder Gewebe quasi ohne Mühe und könnten so in Zukunft Blicke auf das Frühstadium von Karies oder Hautkrebs bzw. in das Innere von Zellen erlauben. Im Forschungszentrum Rossendorf wird die THz-Strahlung vor allem für die Untersuchung von Halbleiter-Materialien genutzt. Hierbei interessiert man sich besonders für die Dynamik der Elektronen, um damit die Grundlagen für komplexe Halbleiterstrukturen besser verstehen zu können und auf dieser Grundlage neue Bauelemente zu entwickeln.



Der Nachteil der Strahlung - sie lässt sich heute noch nicht einfach und günstig erzeugen. Hinzu kommt, dass die erzeugte Strahlung i. d. R. nicht intensiv genug ist für den Einsatz in der modernen Forschung. Man spricht daher regelrecht von einer Lücke, der Terahertz-Lücke. Weltweit arbeiten Forschergruppen daran, diese Lücke zu überwinden. Die Strahlungsquelle soll intensives "Licht" in einem breiten Frequenzbereich aussenden und gleichzeitig kostengünstig sein. Zwei verschiedene Ansätze werden derzeit verfolgt. Beim ersten Ansatz überlagern sich zwei Laser mit unterschiedlichen Frequenzen und sollen so in einem mit Elektroden präparierten Halbleiter kontinuierliche THz-Strahlung erzeugen. Der zweite Ansatz setzt auf superkurze Laserpulse, die ebenfalls auf einen Halbleiter gerichtet werden. Durch die Lichtpulse werden Elektronen im Halbleiter erzeugt, die im elektrischen Feld zwischen zwei auf dem Halbleiter angebrachten Elektroden beschleunigt werden und so THz-Strahlung aussenden.

Die Erfindung im Forschungszentrum Rossendorf geht auf diesen zweiten Ansatz zurück und verbessert die bisher vorhandenen Lösungsmöglichkeiten erheblich. Setzt man die Elektroden auf dem besonderen Halbleitermaterial Galliumarsenid nämlich weit voneinander entfernt (im Zentimeterbereich), um eine große aktive Fläche zur THz-Erzeugung zu erhalten, benötigt man eine Spannung im Kilovolt-Bereich. Damit wäre solch eine Strahlungsquelle für die Anwendung im Labor viel zu unpraktikabel. Setzt man die Elektroden dagegen nah (im Mikrometerbereich), hat man zwar einerseits die erforderliche elektrische Spannung im Griff, reduziert die aktive Fläche jedoch gleichzeitig so, dass die Intensität des erzeugten "Lichts" für die Anwendung nicht ausreichend ist.

Die Rossendorfer Physiker um Prof. Thomas Dekorsy (jetzt Universität Konstanz) und Dr. Stephan Winnerl hatten eine simple, aber äußerst wirkungsvolle Idee. Sie stellten eine Elektrodenstruktur auf der Galliumarsenid-Scheibe (Wafer) her, die fingerartig ineinander greift. Die Abstände der "Finger" betragen jeweils etwa 5 Mikrometer und die Struktur insgesamt hat derzeit eine aktive Fläche von etwa 1 cm2. Ohne einen zweiten technologischen Trick kommt es allerdings nicht zur Aussendung von THz-Strahlung, denn es geschieht zunächst Folgendes: das elektrische Feld wechselt von Zwischenraum zu Zwischenraum die Richtung, so dass die durch die Laserpulse im Halbleitermaterial erzeugten Elektronen in entgegengesetzte Richtungen beschleunigt werden und die ausgesandte Strahlung sich im Ergebnis durch die entstehenden Interferenzen wieder auslöscht. Hier greift nun der folgende Trick: jeder zweite "Finger" auf der Halbleiter-Scheibe wird nachträglich mit einer zweiten Maske zugedeckt. So wird jeder zweite Spalt inaktiv und die Interferenz der ausgesandten Strahlung ist im Ergebnis konstruktiv.

Dr. Stephan Winnerl erläutert: "Die von uns erzeugte Terahertz-Strahlung ist kohärent - eine Eigenschaft, die beispielsweise jedes Laserlicht auszeichnet - und deckt einen Frequenzbereich von 0,5 bis zu 3 Terahertz ab. Damit haben wir ein sehr sensitives Messgerät an der Hand, mit dem wir beispielsweise Schichtstrukturen von Halbleitern in ganz neuem Licht betrachten können. Halbleiter können, jeweils abhängig von bestimmten Strukturen und Schichten, komplexe elektronische Eigenschaften annehmen. Die Terahertz-Strahlung ist zur Untersuchung dieser Eigenschaften ideal geeignet."

Weitere Vorteile der Rossendorfer Erfindung liegen in der Skalierbarkeit der aktiven Fläche und in der Möglichkeit für den Anwender, den Strahldurchmesser für seine jeweiligen Forschungen flexibel einstellen zu können. Dies ist ein wichtiges Kriterium u. a. für die Nutzung der THz-Strahlung als bildgebendes Verfahren für bio-medizinische Fragestellungen. Die Erfindung ist zum Patent angemeldet und in der renommierten Fachzeitschrift Applied Physics Letters vor kurzem veröffentlicht worden (*). Die Konstanzer Firma Gigaoptics GmbH wird die THz-Strahlungsquelle vertreiben und erstmals auf der weltweit größten Fachmesse zur Optoelektronik im Mai in Baltimore, USA, einem internationalen Publikum vorstellen.

Ansprechpartner:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3522; Email: s.winnerl@fz-rossendorf.de
(*) Artikel in: Applied Physics Letters 86, 121114 (2005).

Information:
Das Forschungszentrum Rossendorf (FZR) betreibt Grundlagen- und anwendungsorientierte Forschung mit Photonen- und Teilchenstrahlen, wobei
· die Erforschung der Materie auf der Skala von Nanometern,
· der Schutz von Mensch und Umwelt vor technischen Risiken und
· der Einsatz bei Tumor- und Stoffwechselerkrankungen
den Schwerpunkt bilden. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZR ist mit ca. 550 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 56 Mill. Euro. Hinzu kommen etwa 6 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Pressekontakt:
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Fax: 0351 260 - 2700
c.bohnet@fz-rossendorf.de
Postanschrift: Postfach 51 01 19 . 01314 Dresden
Besucheranschrift: Bautzner Landstraße 128 . 01328 Dresden

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen