Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchen für Krebstherapie und Nanotechnologie

11.04.2005


In den 100 Jahren, seit Einstein seine spezielle Relativitätstheorie niederschrieb, hat die Wissenschaft immense Fortschritte erzielt - nicht zuletzt dank den Gesetzen des genialen Physikers. So gehorchen auch Teilchen in Beschleunigern den relativistischen Effekten. Doch niemand hätte 1905 an die vielen Anwendungen gedacht, die durch Teilchenstrahlen aus Protonen oder Elektronen möglich wurden. Weitsichtige Grundlagenforschung legt die Basis für künftige Innovationen, wie drei Forschungsprojekte am Paul Scherrer Institut (PSI) in der Schweiz exemplarisch zeigen: Protonentherapie, Fotolithografie und Mikromagnetismus.



Die Protonentherapie am PSI - von der Pioniertat zur klinischen Praxis



Anfang der 70er-Jahre wurde am PSI ein Protonenbeschleuniger für die physikalische Grundlagenforschung gebaut. Bald stellte sich heraus, dass die Anlage auch für die Krebsforschung massgebende Beiträge leisten kann. In der ersten Hälfte der 80er-Jahre installierte das PSI eine besondere Einrichtung, womit man erstmals in Europa Augenmelanom-Patienten mit einer völlig neuen Methode mit Protonen bestrahlen konnte. Basierend auf diesen Erfolgen entwickelte ein Team in den 90er-Jahren am PSI die Spot-Scanning-Technik. Mit dieser weltweit einzigartigen Methode lassen sich auch tief liegende Tumoren mit Protonen äusserst präzise und schonend bestrahlen. Das PSI hat damit international grosses Interesse bei Radioonkologie-Kliniken und der Industrie ausgelöst. Zurzeit entsteht in München das Rinecker Proton Therapy Center (RPTC). Dieses erste vollklinische Protonenbestrahlungszentrum in Europa basiert grösstenteils auf der vom PSI entwickelten Scanning-Bestrahlungstechnik. Weitere Zentren sind in Köln und Essen in Projektierung.

Im Hinblick auf die Einführung des neuen Therapieverfahrens in eine breite klinische Anwendung nimmt das PSI mit dem Projekt PROSCAN zurzeit ein neuartiges Zyklotron in Betrieb und entwickelt auch eine neue Patienten-Bestrahlungseinrichtung (Gantry). Anfang April konnte aus dem Medizin-Zyklotron erstmals ein Protonenstrahl erzeugt werden.

Immer winzigere Strukturen - Weltrekord in der Fotolithografie

Der Fortschritt in der Mikroelektronik führt zu immer schnelleren und billigeren Produkten und basiert auf der Herstellung immer kleinerer Schaltkreise. Angesichts dieses technologischen Trends wird an der Synchrotron Lichtquelle Schweiz (SLS), einem Elektronen-Beschleuniger, an Weiterentwicklungen der Lithografietechniken geforscht. So nutzt die kürzlich in Betrieb genommene Röntgen-Interferenz-Lithografie-Strahllinie das Licht im Bereich des extremen Ultravioletts (EUV), um kleinste Strukturen in fotosensitiven Lacken herzustellen. Kürzlich gelang es Forschern am PSI, damit Strukturen mit Perioden von 32 Nanometern zu erzeugen. Das ist weltweit die bisher kleinste, mit Licht jeglicher Wellenlänge erzeugte Dimension. Die an der SLS hergestellten Strukturen lassen sich zum Beispiel bei der Entwicklung der EUV-Lithografie verwenden, um damit noch leistungsfähigere Computerchips herzustellen.

Röntgenpulse aus dem Synchrotron - Tanz der Domänen

In magnetischen Teilchen von wenigen Tausendstel-Millimeter Durchmesser gibt es Bereiche, wo die Magnetnadeln aller Atome in die gleiche Richtung zeigen. Diese so genannten Domänen lassen sich mit Röntgenlicht aus der SLS sichtbar machen und ihre Reaktion auf angelegte Magnetfelder untersuchen. Es braucht die SLS, eines der weltweit modernsten Synchrotrons, um die extrem kurzen und hellen Pulse von Röntgenlicht für solche anspruchsvollen Experimente zu generieren. Bei der Untersuchung der magnetischen Domänen interessieren nicht nur deren statische Eigenschaften, sondern auch die Änderungen, die sich ergeben, wenn ein äusseres Magnetfeld angelegt wird. Denn diese geben Aufschluss über die Kräfte, die zwischen den atomaren Magnetnadeln herrschen. Die dabei gewonnenen Resultate sind für die Grundlagenforschung von grossem Interesse, sie finden aber auch wichtige technische Anwendungen. So speichern kleinste magnetische Teilchen in Computerfestplatten Informationen. Je schneller das rasant wechselnde Domänenmuster wieder hergestellt ist, desto rascher lassen sich Daten auf der Festplatte ablegen und wieder abrufen.

Für weitere Auskünfte:
Protonentherapie: Martin Jermann, Programmleiter Protonentherapie und Stabschef, PSI; Telefon +41 (0)56 310 27 18; martin.jermann@psi.ch

Fotolithografie: Prof. Dr. Jens Gobrecht, Leiter Labor für Mikro- und Nanotechnologie, PSI, sowie Leiter von INKA (Institut für Nanotechnische Kunststoff-Anwendungen), PSI/FH Aargau/Nordwestschweiz; Telefon +41 (0)56 310 25 29; jens.gobrecht@psi.ch

Mikromagnetismus: Dr. Christoph Quitmann, Forschungsgruppenleiter an der SLS, PSI; Telefon +41 (0)56 31045 60; christoph.quitmann@psi.ch

Beat Gerber | idw
Weitere Informationen:
http://www.psi.ch/medien/medien_news.shtml

Weitere Berichte zu: Nanotechnologie ProTon Protonentherapie SLS Synchrotron

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen