Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungewöhnlichen Quantenzuständen ultrakalter Atome auf der Spur

24.03.2005


Erstmals realisierte Methode eröffnet neue Möglichkeiten der Untersuchung ultrakalter Quantengase - Veröffentlichung im Wissenschaftsjournal "Nature"

... mehr zu:
»Atomwolke »Boson »Gitterplatz

In den Regeln der Quantenmechanik ist der Zufall eigentlich eingebaut: Wenn man Atome, die getrennt voneinander festgehalten werden, loslässt und später erneut untersucht, so sollten sie sich zufällig verteilt haben. Tatsächlich ist die Position der Atome zwar unvorhersagbar, ihre Verteilung untereinander aber doch nicht völlig zufällig. Wenn man die Atome aus einem Gitter aus Licht freilässt, so halten sie sich einige Zeit später bevorzugt in ganz bestimmten Abständen voneinander auf. Forscher der Johannes Gutenberg-Universität Mainz berichten in der aktuellen Ausgabe des Wissenschaftsjournals "Nature" über den Nachweis solcher Wechselbeziehungen, die über das Verhalten der Atome in Gitterfallen Aufschluss geben sollen. Solche Fallen dienen als Modellsysteme für Festkörpereffekte wie Magnetismus oder Supraleitung.

Robert Hanbury Brown und Richard Twiss zeigten 1956 in einem Aufsehen erregenden Experiment, dass identische Teilchen, welche zufällig und unabhängig voneinander von mehreren Quellen abgeschickt werden, nicht völlig unabhängig voneinander am Zielort ankommen - und das selbst dann, wenn keinerlei Wechselwirkung oder Kommunikation zwischen ihnen stattfindet. Der Grund dafür liegt in der so genannten Quantenstatistik: Jedes Objekt in der Natur gehört einer von zwei Teilchenklassen an. Je nachdem welchen Eigendrehimpuls oder "Spin" es hat, ist es entweder ein Boson oder ein Fermion. Bosonen haben die Eigenschaft, dass sie sich auch ohne Anziehungskraft bevorzugt am gleichen Ort aufhalten. Physiker der Johannes Gutenberg-Universität Mainz haben jetzt in einem Experiment gezeigt, wie sich dieser Effekt ausnutzen lässt, um Informationen über besondere Zustände von ultrakalten Atomen zu erhalten. Dabei handelt es sich um Gaswolken aus extrem kalten Atomen knapp über dem absoluten Temperaturnullpunkt von ungefähr minus 273 Grad Celsius. Sie werden zuerst zu einem so genannten Bose-Einstein-Kondensat (BEC) überführt und dann in einem Gitter aus Lichtstrahlen festgehalten. Dabei ändert sich der Charakter der Gaswolke grundlegend. Im BEC-Zustand sind die Atome "delokalisiert", sie befinden sich sozusagen auf allen Plätzen des Gitters gleichzeitig. Wird das Gitter aber stärker eingestellt, enger oder tiefer, so verwandelt sich die Wolke in einen so genannten "Mott-Isolator". Jetzt sind die Atome jeweils fest auf einem Gitterplatz lokalisiert.


Nun werden die Teilchen aus dem Gitter herausgelassen und die Atomwolke breitet sich in alle Richtungen aus. Da sich bei den niedrigen Temperaturen Materie wie eine Welle verhält und alle Atome im ursprünglichen BEC-Zustand von jedem Gitterplatz gleichzeitig starten, gibt es einen Interferenzeffekt: Das Atom kann vom Gitter aus nur in bestimmte Richtungen fliegen, ähnlich wie farbiges Licht vom Gittermuster einer CD in verschiedene Richtungen gespiegelt wird. Nachdem die Atome eine kurze Zeit geflogen sind, wird mit einer fotographischen Aufnahme bestimmt, wie sie jetzt verteilt sind. Im Fall eines Bose-Einstein-Kondensats halten sich die Atome, dies zeigt das Foto, nur an ganz bestimmten Stellen des Raumes auf und sind wieder in einem Gittermuster angeordnet.

Im Mott-Zustand dagegen startet jedes Atom von nur einem, dem eigenen Gitterplatz und bewegt sich völlig zufällig in irgendeine Richtung, ohne dass Interferenz auftritt. Die Aufnahme einer solchermaßen expandierten Atomwolke zeigt also eine zufällige Verteilung von Atomen ohne Struktur - ob die Atome aus einem Gitter stammen oder aus einer anderen Quelle nicht ist nicht mehr sichtbar. Dennoch sind die Atome nicht völlig zufällig verteilt: Da es sich um Bosonen handelt, befinden sich tendenziell mehrere von ihnen am gleichen Ort. Aber nicht nur das, auch die Tatsache, dass die Atome aus einem Gitter kommen, hinterlässt ihre Spuren im Zufallsmuster: Die Atome halten sich bevorzugt in ganz bestimmten Abständen voneinander auf, die durch das Gitter der Falle vorgegeben sind. Je enger das ursprüngliche Gitter war, desto größer sind diese Abstände.

Diese Eigenheiten der Verteilung erhält man aus einer Analyse der zufälligen Fluktuationen, also des Rauschens, in den Bildern der expandierten Atomwolken. Die Methode wurde kürzlich von einer Gruppe von Theoretikern der Harvard University vorgeschlagen und mit dem Mainzer Experiment nun erstmals nachvollzogen. "Damit lässt sich zum ersten mal die reguläre Struktur einer Atomwolke in einem tiefen Lichtgitter analysieren", erklärte Prof. Dr. Immanuel Bloch vom Institut für Physik. "Und wir haben damit einen eleganten neuen Nachweis für den Hanbury Brown-Twiss-Effekt bei ultrakalten Atomen." Atome in Gitterfallen gelten als Modellsysteme für die mikroskopische Struktur von Kristallen, Supraleitern, Magneten und Halbleitern. Daher erhoffen sich die Wissenschaftler von der neuen Methode neue Möglichkeiten, um die Strukturen dieser Stoffe entschlüsseln zu können.

Petra Giegerich | idw
Weitere Informationen:
http://www.physik.uni-mainz.de/quantum/bec/
http://www.physik.uni-mainz.de

Weitere Berichte zu: Atomwolke Boson Gitterplatz

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise