Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Licht auf Metallplatten gespeichert wird

02.03.2005


Kleine Löcher bieten überraschende Einsichten


Der Beweis der Relativitätstheorie 1919 war eigentlich eine Ausnahme. Vieles von dem, was Einstein erdachte, ließ sich mit damaligen Mitteln nicht realisieren oder überprüfen: Sei es das Prinzip des Lasers, das Bose-Einstein- Kondensat oder die in einem sich schnell bewegenden Objekt anders verlaufende Zeit. Ähnlich verlief es mit der Nahfeldmikroskopie. Einstein spielte dabei eine kleinere Rolle, das Hauptverdienst ist Edward Hutchinson Synge zuzuschreiben. In einem Brief an Einstein spekulierte der Physiker darüber, dass es möglich sein müsste, Objekte abzubilden, die kleiner sind als die Wellenlängen des dazu benutzten Lichts. Dazu müsste man eine Vorrichtung haben, die so winzig kleine Löcher aufweist, dass keine Lichtwelle durchpasst. Damals, 1928, ein Ding der Unmöglichkeit. Heute ist es Routine für die Forscher, mit solch winzigen Löchern Experimente zu machen. An vorderster Forschungsfront steht dabei die Arbeitsgruppe um Christoph Lienau vom Max-Born-Institut, welche die ungewöhnlichen Eigenschaften von „Oberflächenplasmonen“ untersucht. Lienau: „Das Forschungsthema ist brandheiß.“

Licht, das um die Ecke biegt. Metalle, die Licht für eine gewisse Zeit speichern. Löcher, die Lichtwellen durchlassen, obwohl die Wellen zu groß dafür sind: Was für die meisten Menschen widersprüchlich klingt, das ist in der Arbeitsgruppe von Dr. Christoph Lienau Alltag. Sein Kollege Claus Ropers und er arbeiten am Max-Born-Institut mit ultrakurzen Lichtpulsen, die sie auf Lochplatten schießen. Dabei treten interessante Effekte auf.


Das Laserlicht breitet sich entlang der Metalloberfläche aus und regt Elektronen zum Schwingen an. Dadurch entsteht ein eigenartiger Zustand auf der Oberfläche, der dazu führt, dass Licht für eine kurze Zeit an der Oberfläche gespeichert wird – und zwar an der Vorderseite ebenso wie an der Rückseite der Lochplatten. Die Experten sprechen davon, dass Oberflächenplasmonen erzeugt werden. Der Lichtpuls dringt daher nur mit einer zeitlichen Verzögerung durch die Löcher und verändert dabei auch seine Struktur. Man kann sich das wie ein Nudelsieb vorstellen, in das man einen großen Schwall Wasser kippt. Der „Wasserpuls“ geht nicht sofort durch die Löcher, sondern füllt zunächst erst einmal das Sieb. Christoph Lienau ist zwar nicht ganz glücklich mit dem Vergleich des Reporters, doch die Quantenoptik lässt sich eben nur schwer in anschauliche Worte zu fassen.

Schon die Kürze der Pulse, zehn Femtosekunden, kann sich kein Mensch vorstellen. Eine Femtosekunde verhält sich zu einer Sekunde wie eine Sekunde zu 31,7 Millionen Jahren. Diese kurzen Pulse erzeugt ein Kollege Lienaus am MBI, Günter Steinmeyer, mit speziellen Spiegeln (Verbundjournal vom März 2004). Die Pulse haben eine ganz charakteristische Struktur: Auf einer Zeitskala dargestellt sieht man zunächst einige kleine Wellen, dann einen ganz scharfen Zacken – den Laserpuls – gefolgt von einigen kleineren Zacken (Bild). „Diese Zeitstruktur ändert sich nach dem Durchlaufen der Lochplatten“, berichtet Lienau. „Das Licht wird für einige hundert Femtosekunden auf der Metalloberfläche gespeichert.“ Ähnliche Effekte seien auch bei photonischen Kristallen zu erwarten.
In einer demnächst in der Fachzeitschrift Physical Review Letters erscheinenden Arbeit haben Ropers und Lienau nun einen Weg gefunden, um einen Lichtpuls in einer zweidimensionalen Struktur (auf der durchlöcherten Metalloberfläche) einzufangen und seine Lebensdauer zu verlängern. „Das ist sehr wichtig“, betont Lienau. Denn die Versuchsanordnung ergibt einen ganz speziellen Lichtpuls, dessen Struktur sehr genau vermessen werden kann. „Wir vermuten, dass schon wenige fremde Moleküle auf der Metalloberfläche die zeitliche Form des Lichtimpulses verändern werden“, sagt Lienau, „weshalb wir uns vorstellen können, dass der Effekt für den Nachweis von winzigsten Stoffmengen genutzt werden könnte.“ Das Stichwort lautet Nanosensorik. Mit einer Änderung des Winkels zwischen Metallplatte und Lichtstrahl gelingt es sogar, die Verweildauer des Lichts quasi einzustellen. Lienau: „Es sieht so aus, als hätten wir hierfür einen neuen Schalter gefunden.“

Damit nicht genug. Mit Hilfe von Oberflächenplasmonen lässt sich Licht auf allerkleinstem Raum lokalisieren. Entscheidend ist nicht mehr die Wellenlänge des Lichts, sondern der Durchmesser der Löcher. „Wir können damit die Auflösungsbegrenzung von Lichtmikroskopen umgehen“, sagt Lienau. Vor gut 130 Jahren hatte Ernst Abbe in Jena seine bis heute gültige Theorie der mikroskopischen Auflösung formuliert. Demnach begrenzt die Wellennatur des Lichts die räumliche Auflösung optischer Verfahren: Was kürzer ist als eine Lichtwelle, kann nicht mehr abgebildet werden. 55 Jahre nach Abbe legte E. H. Synge dann die Grundlagen für die optische Nahfeldmikroskopie. Doch damals gab es weder Laser, noch die Möglichkeit, so winzige Löcher zu erzeugen. Heute gibt es Glasfasern mit winzigen Spitzen, die den Zweck erfüllen. Und die beleuchteten Löcher in den Platten, wie sie Lienaus Gruppe erzeugt.

Ein dritter Effekt ist ebenfalls interessant: Mit Oberflächenplasmonen lassen sich extrem kurze Lichtwellenlängen erzeugen, möglicherweise sogar so kurz wie die von Röntgenstrahlen. „Wir können wenige Nanometer große Lichtflecken machen, wenn man so will eine Art Röntgenmikroskopie auf einfache Weise“, sagt Lienau. Wobei: Der Begriff „einfach“ ist hier relativ.

Dr. Christoph Lienau | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Femtosekunde Lichtpuls Lichtwelle Oberflächenplasmon

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie