Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silikate im Wassereis

25.02.2005


Der Saturnmond Mimas vor den Saturnringen. Bild: NASA/JPL/Space Science Institute


Wissenschaftler vom Max-Planck-Institut für Kernphysik bestimmen die mineralische Zusammensetzung der schnellen Staubteilchen von Saturn


Die chemische Zusammensetzung der schnellen Staubteilchen, die mit Geschwindigkeiten von über 100 Kilometern pro Sekunde das Saturnsystem verlassen, hat jetzt ein Forscherteam um Sascha Kempf vom Heidelberger Max-Planck-Institut für Kernphysik mit dem Staubdektor "Cosmic Dust Analyser" (CDA) auf der Raumsonde "Cassini" analysiert. Etwa drei Viertel der Staubpartikel wiesen dabei silikatisches Material auf, obwohl die Saturnringe überwiegend aus Wassereis bestehen. (Science Express Paper, 24 Februar 2005).

Einige der auf ihren Mineralgehalt untersuchten schnellen Staubteilchen stammen aus dem äußeren A-Ring von Saturn. Das konnten die Wissenschaftler aufgrund der dynamischen Eigenschaften der mit dem Staubdetektor auf der Raumsonde "Cassini" detektierten Teilchen nachweisen. Da die majestätischen Ringe Saturns nicht direkt mittels Raumsonden erforscht werden können, erlauben nun die Untersuchungen der Partikel Rückschlüsse auf das Material der Saturnringe.


Die Heidelberger Forscher werteten dazu die Massenspektren von mehr als 500 Staubteilchen aus, deren Einschlagssignale nach Cassinis Eintritt in die Saturnumlaufbahn im Juli 2004 vom Staubdetektor aufgezeichnet wurden. "Aufgrund der Winzigkeit der Staubteilchen, die kleiner als 40 Nanometer sind, waren die resultierenden Flugzeitmassenspektren sehr schwach und verrauscht", sagt Kempf. "Einige Spektren enthielten nur eine gut aufgelöste Massenlinie. Die Spektren zeigten überwiegend Linien gesteinsbildender Elemente wie Silizium und Sauerstoff, das Material des Einschlagstargets Rhodium, sowie Kohlenstoff unklarer Herkunft", erklärt der Physiker. "Unsere qualitative Auswertung der Massenspektren ergab, dass die Massenlinien vier verschiedene Materialgruppen zugeordnet werden können, nämlich Silikatverbindungen, Eis- und Stickstoffverbindungen sowie Alkaliverbindungen, welche Verunreinigungen des Einschlagstargets zugeordnet werden können", sagt Kempf.

Zum Erstaunen der Physiker deuteten die Massenspektren von 74 Prozent der registrierten Staubpartikel auf ein silikatisches Material, obwohl die Saturnringe überwiegend aus Wassereis bestehen. Allerdings wird schon seit langen aufgrund der leichten Verfärbung der Ringe vermutet, dass die Ringkörper winzige silikatische Verunreinigungen enthalten.

Die Heidelberger Forscher vermuten daher, dass die Staubteilchen Saturns aus den silikatischen Einschlüssen im Wassereis der Ringkörper des Saturns bestehen. Freigesetzt werden die Teilchen wahrscheinlich durch Kollisionen zwischen den einzelnen Eiskörpern in den Saturn-Ringen. Anschließend werden sie dann aufgrund ihrer winzigen Masse in den Weltraum geschleudert, anders als die Eispartikel, die weit schwerer sind und die Anziehungskraft des Planeten nicht überwinden können.

Sascha Kempf | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Massenspektren Raumsonde Saturn Saturnring Staubteilchen Wassereis

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie