Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silikate im Wassereis

25.02.2005


Der Saturnmond Mimas vor den Saturnringen. Bild: NASA/JPL/Space Science Institute


Wissenschaftler vom Max-Planck-Institut für Kernphysik bestimmen die mineralische Zusammensetzung der schnellen Staubteilchen von Saturn


Die chemische Zusammensetzung der schnellen Staubteilchen, die mit Geschwindigkeiten von über 100 Kilometern pro Sekunde das Saturnsystem verlassen, hat jetzt ein Forscherteam um Sascha Kempf vom Heidelberger Max-Planck-Institut für Kernphysik mit dem Staubdektor "Cosmic Dust Analyser" (CDA) auf der Raumsonde "Cassini" analysiert. Etwa drei Viertel der Staubpartikel wiesen dabei silikatisches Material auf, obwohl die Saturnringe überwiegend aus Wassereis bestehen. (Science Express Paper, 24 Februar 2005).

Einige der auf ihren Mineralgehalt untersuchten schnellen Staubteilchen stammen aus dem äußeren A-Ring von Saturn. Das konnten die Wissenschaftler aufgrund der dynamischen Eigenschaften der mit dem Staubdetektor auf der Raumsonde "Cassini" detektierten Teilchen nachweisen. Da die majestätischen Ringe Saturns nicht direkt mittels Raumsonden erforscht werden können, erlauben nun die Untersuchungen der Partikel Rückschlüsse auf das Material der Saturnringe.


Die Heidelberger Forscher werteten dazu die Massenspektren von mehr als 500 Staubteilchen aus, deren Einschlagssignale nach Cassinis Eintritt in die Saturnumlaufbahn im Juli 2004 vom Staubdetektor aufgezeichnet wurden. "Aufgrund der Winzigkeit der Staubteilchen, die kleiner als 40 Nanometer sind, waren die resultierenden Flugzeitmassenspektren sehr schwach und verrauscht", sagt Kempf. "Einige Spektren enthielten nur eine gut aufgelöste Massenlinie. Die Spektren zeigten überwiegend Linien gesteinsbildender Elemente wie Silizium und Sauerstoff, das Material des Einschlagstargets Rhodium, sowie Kohlenstoff unklarer Herkunft", erklärt der Physiker. "Unsere qualitative Auswertung der Massenspektren ergab, dass die Massenlinien vier verschiedene Materialgruppen zugeordnet werden können, nämlich Silikatverbindungen, Eis- und Stickstoffverbindungen sowie Alkaliverbindungen, welche Verunreinigungen des Einschlagstargets zugeordnet werden können", sagt Kempf.

Zum Erstaunen der Physiker deuteten die Massenspektren von 74 Prozent der registrierten Staubpartikel auf ein silikatisches Material, obwohl die Saturnringe überwiegend aus Wassereis bestehen. Allerdings wird schon seit langen aufgrund der leichten Verfärbung der Ringe vermutet, dass die Ringkörper winzige silikatische Verunreinigungen enthalten.

Die Heidelberger Forscher vermuten daher, dass die Staubteilchen Saturns aus den silikatischen Einschlüssen im Wassereis der Ringkörper des Saturns bestehen. Freigesetzt werden die Teilchen wahrscheinlich durch Kollisionen zwischen den einzelnen Eiskörpern in den Saturn-Ringen. Anschließend werden sie dann aufgrund ihrer winzigen Masse in den Weltraum geschleudert, anders als die Eispartikel, die weit schwerer sind und die Anziehungskraft des Planeten nicht überwinden können.

Sascha Kempf | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Massenspektren Raumsonde Saturn Saturnring Staubteilchen Wassereis

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE