Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarze Löcher in der Radarfalle

23.02.2005


Künstlerische Darstellung des relativistischen Materiestroms um ein schnell rotierendes Schwarzes Loch im Zentrum einer Akkretionsscheibe (orange). Das Licht der Atome, die auf den Beobachter zu fliegen, ist zu kürzeren Wellenlängen (blau) verschoben und wesentlich heller als das Licht auf jener Seite, die sich vom Beobachter entfernt (rot). Bild: Max-Planck-Institut für extraterrestrische Physik


Das mit dem ESA-Satelliten XMM-Newton gemessene mittlere Röntgenspektrum von etwa 100 aktiven Galaxien des kosmischen Hintergrunds. Das Licht wurde zunächst auf das Ruhesystem unserer Milchstraße korrigiert und dann addiert. Danach wurde ein einfaches spektrales Modell ohne Linien abgezogen. Das Restspektrum zeigt eine starke, relativistisch verbreiterte Eisenlinie, die auf Materie in unmittelbarer Nähe von Schwarzen Löchern schließen lässt. Bild: Max-Planck-Institut für extraterrestrische Physik


Forscher messen mit dem Röntgensatelliten XMM-Newton in der Umgebung der Massemonster relativistische Geschwindigkeiten


Astronomen ist es gelungen, die von Einsteins Relativitätstheorie vorhergesagten Effekte im Gravitationsfeld Schwarzer Löcher nachzuweisen. Mit dem europäischen Röntgenobservatorium XMM-Newton untersuchten die Forscher unter Leitung von Günther Hasinger, Direktor am Max-Planck-Institut für extraterrestrische Physik in Garching bei München, das Licht des kosmischen Röntgenhintergrunds - die vereinte Strahlung Schwarzer Löcher, die in den Zentren weit entfernter aktiver Galaxien sitzen. Als Indiz diente der "Fingerabdruck" von Eisen: Im addierten Spektrum von rund 100 jungen Milchstraßensystemen beobachteten die Wissenschaftler eine verbreiterte, asymmetrische Linie. Deren Form passt exakt zu den Aussagen der Relativitätstheorie (Astronomy & Astrophysics, vol. 432(2), März 2005).

Der gesamte Himmel ist von einem diffusen, hoch energetischen Leuchten erfüllt: der kosmischen Röntgenhintergrund-Strahlung. In den vergangenen Jahren haben die Astronomen gezeigt, dass diese Strahlung fast vollständig von einzelnen Objekten stammt. Ähnliches gelang Galileo Galilei, als er Anfang des 17. Jahrhunderts mit seinem Fernrohr die Milchstraße erstmals in einzelne Sterne auflöste. Im Fall des Röntgenhintergrunds handelt es sich um hunderte Millionen Schwarzer Löcher, die in weit entfernten Milchstraßensystemen gerade "gefüttert" - also mit Materie versorgt - werden. Weil die Schwarzen Löcher dabei an Masse zulegen, sehen wir im Röntgenhintergrund deren Wachstumsphase. Im heutigen Universum stecken massereiche Schwarze Löcher im Zentrum nahezu aller Galaxien.


Wenn Materie in den Schlund eines Schwarzen Lochs stürzt, rast sie in dem kosmischen Mahlstrom der Akkretionsscheibe fast mit Lichtgeschwindigkeit herum und heizt sich dabei so stark auf, dass sie kurz vor ihrem endgültigen Verschwinden hoch energetische Strahlung als eine Art letzten Hilfeschrei ausstößt. Werden sie im Zentrum aktiver Galaxien gut genährt, gehören die eigentlich unsichtbaren Schwarzen Löcher daher zu den leuchtkräftigsten Objekten im All. Die chemischen Elemente in der Materie senden Röntgenlicht bei charakteristischen Wellenlängen aus und lassen sich so durch ihren spektralen Fingerabdruck identifizieren. Besonders gut geeignet sind die Atome des Eisens, da dieses Metall im Kosmos am häufigsten vorkommt, bei sehr hohen Temperaturen besonders intensiv strahlt und im Spektrum eine deutliche Spur (eine Linie) zeigt.

Ähnlich wie die Polizei Schnellfahrer mittels Radarfallen stellt, weisen Astronomen die extrem hohen Geschwindigkeiten, mit denen die Eisenatome ein Schwarzes Loch umkreisen, durch eine Wellenlängenverschiebung des Lichts nach. Diesem relativistischen Doppler-Effekt überlagert sich wegen der großen Masse von Schwarzen Löchern die so genannten Gravitationsrotverschiebung - beides Phänomene, wie sie die Relativitätstheorie fordert. So postuliert die Spezielle Relativitätstheorie, dass schnell bewegte Uhren langsamer laufen; nach der Allgemeinen Relativitätstheorie gilt dies auch für Uhren in der Nähe großer Massen. Auf die elektromagnetische Strahlung übertragen heißt das: Die Wellenlänge des von Eisenatomen ausgesandten Lichts wird in den langwelligen, roten Teil des Spektrums verschoben. Dabei ergibt sich eine verbreiterte, asymmetrische Linienform - gleichsam ein verschmierter Fingerabdruck.

Blickt man von der Seite auf die in der Akkretionsscheibe um ein Schwarzes Loch herumrasende Materie (Abb. 1), erscheint das Licht der sich auf uns zu bewegenden Eisenatome stark ins Blaue verschoben und wesentlich heller als das jener Atome, die sich von uns entfernen. Die relativistischen Effekte sind umso stärker, je näher die Materie dem Schwarzen Loch kommt. Wegen der verzerrten Raumzeit sind sie am stärksten bei sehr schnell rotierenden Schwarzen Löchern. In den vergangenen Jahren gelangen Messungen relativistischer Eisenlinien an wenigen, nahe gelegenen aktiven Galaxien; zum ersten Mal wurden die Astronomen 1995 mit dem japanischen Satelliten ASCA fündig.

Nun haben Forscher um Günther Hasinger, Xavier Barcons vom spanischen Instituto de Física de Cantabria und Andy Fabian von der britischen Universität Cambridge den oben beschriebenen relativistisch verschmierten Fingerabdruck der Eisenatome auch im Röntgenhintergrund aufgespürt, also im Licht von Schwarzen Löchern in den Zentren weit entfernter Galaxien (Abb. 2). Dazu richteten die Forscher das Observatorium XMM-Newton der europäischen Raumfahrtagentur ESA insgesamt mehr als 500 Stunden auf einen Himmelsauschnitt in der Konstellation Großer Wagen.

Wegen der Ausdehnung des Universums bewegen sich die Galaxien umso schneller von uns fort, je weiter entfernt sie sind. Diese unterschiedlich hohen Fluchtgeschwindigkeiten lassen die Spektrallinien bei verschiedenen Wellenlängen erscheinen. Daher mussten die Astronomen das Röntgenlicht sämtlicher Galaxien zunächst auf das Ruhesystem unserer Milchstraße korrigieren und erhielten damit eine absolute Bezugsgröße. Dafür wurden mit dem amerikanischen Keck-Teleskop auf Hawaii Geschwindigkeitsmessungen für mehr als 100 Objekte durchgeführt. Als die Forscher deren Licht addiert hatten, zeigte sich ein unerwartet starkes Signal - und die charakteristisch verbreiterte Form der Eisenlinie.

Aus der Stärke des Röntgensignals schlossen die Astronomen unter anderem auf die Anzahl der Eisenatome innerhalb der Materie. Überraschenderweise ist die chemische Häufigkeit von Eisen im "Futter" dieser jungen Schwarzen Löcher etwa dreifach größer als in unserem wesentlich später entstandenen Sonnensystem. Die Zentren der Galaxien im frühen Universum hatten also eine außerordentlich effiziente Methode, Eisen zu produzieren - möglicherweise, weil in aktiven Galaxien besonders viele massereiche Sterne die chemischen Elemente bis hin zum Eisen vergleichsweise schnell erbrüten.

Die Breite der Linie lässt darauf schließen, dass die Eisenatome dem Schwarzen Loch sehr nahe kommen und deshalb die meisten Schwarzen Löcher im Weltall vermutlich schnell rotieren. Denn diese Schwarzen Löcher reißen den sie umgebenden Raum mit wie ein Rührwerk den Teig. Deshalb kann Materie, die in der selben Richtung um ein Schwarze Loch fliegt, näher an das Massemonster gelangen, ohne hineinzufallen. Und so sieht man hier höhere Geschwindigkeiten und eine größere Gravitationsrotverschiebung. Dieser Befund ergibt sich auch, wenn man das Licht im Röntgenhintergrund mit der gesamten Masse der "schlafenden" Schwarzen Löcher in den Zentren der Galaxien vergleicht, wie das kürzlich mehrere Forschergruppen getan haben.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Eisenatom Galaxie Materie Relativitätstheorie Röntgenhintergrund

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie