Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarze Löcher in der Radarfalle

23.02.2005


Künstlerische Darstellung des relativistischen Materiestroms um ein schnell rotierendes Schwarzes Loch im Zentrum einer Akkretionsscheibe (orange). Das Licht der Atome, die auf den Beobachter zu fliegen, ist zu kürzeren Wellenlängen (blau) verschoben und wesentlich heller als das Licht auf jener Seite, die sich vom Beobachter entfernt (rot). Bild: Max-Planck-Institut für extraterrestrische Physik


Das mit dem ESA-Satelliten XMM-Newton gemessene mittlere Röntgenspektrum von etwa 100 aktiven Galaxien des kosmischen Hintergrunds. Das Licht wurde zunächst auf das Ruhesystem unserer Milchstraße korrigiert und dann addiert. Danach wurde ein einfaches spektrales Modell ohne Linien abgezogen. Das Restspektrum zeigt eine starke, relativistisch verbreiterte Eisenlinie, die auf Materie in unmittelbarer Nähe von Schwarzen Löchern schließen lässt. Bild: Max-Planck-Institut für extraterrestrische Physik


Forscher messen mit dem Röntgensatelliten XMM-Newton in der Umgebung der Massemonster relativistische Geschwindigkeiten


Astronomen ist es gelungen, die von Einsteins Relativitätstheorie vorhergesagten Effekte im Gravitationsfeld Schwarzer Löcher nachzuweisen. Mit dem europäischen Röntgenobservatorium XMM-Newton untersuchten die Forscher unter Leitung von Günther Hasinger, Direktor am Max-Planck-Institut für extraterrestrische Physik in Garching bei München, das Licht des kosmischen Röntgenhintergrunds - die vereinte Strahlung Schwarzer Löcher, die in den Zentren weit entfernter aktiver Galaxien sitzen. Als Indiz diente der "Fingerabdruck" von Eisen: Im addierten Spektrum von rund 100 jungen Milchstraßensystemen beobachteten die Wissenschaftler eine verbreiterte, asymmetrische Linie. Deren Form passt exakt zu den Aussagen der Relativitätstheorie (Astronomy & Astrophysics, vol. 432(2), März 2005).

Der gesamte Himmel ist von einem diffusen, hoch energetischen Leuchten erfüllt: der kosmischen Röntgenhintergrund-Strahlung. In den vergangenen Jahren haben die Astronomen gezeigt, dass diese Strahlung fast vollständig von einzelnen Objekten stammt. Ähnliches gelang Galileo Galilei, als er Anfang des 17. Jahrhunderts mit seinem Fernrohr die Milchstraße erstmals in einzelne Sterne auflöste. Im Fall des Röntgenhintergrunds handelt es sich um hunderte Millionen Schwarzer Löcher, die in weit entfernten Milchstraßensystemen gerade "gefüttert" - also mit Materie versorgt - werden. Weil die Schwarzen Löcher dabei an Masse zulegen, sehen wir im Röntgenhintergrund deren Wachstumsphase. Im heutigen Universum stecken massereiche Schwarze Löcher im Zentrum nahezu aller Galaxien.


Wenn Materie in den Schlund eines Schwarzen Lochs stürzt, rast sie in dem kosmischen Mahlstrom der Akkretionsscheibe fast mit Lichtgeschwindigkeit herum und heizt sich dabei so stark auf, dass sie kurz vor ihrem endgültigen Verschwinden hoch energetische Strahlung als eine Art letzten Hilfeschrei ausstößt. Werden sie im Zentrum aktiver Galaxien gut genährt, gehören die eigentlich unsichtbaren Schwarzen Löcher daher zu den leuchtkräftigsten Objekten im All. Die chemischen Elemente in der Materie senden Röntgenlicht bei charakteristischen Wellenlängen aus und lassen sich so durch ihren spektralen Fingerabdruck identifizieren. Besonders gut geeignet sind die Atome des Eisens, da dieses Metall im Kosmos am häufigsten vorkommt, bei sehr hohen Temperaturen besonders intensiv strahlt und im Spektrum eine deutliche Spur (eine Linie) zeigt.

Ähnlich wie die Polizei Schnellfahrer mittels Radarfallen stellt, weisen Astronomen die extrem hohen Geschwindigkeiten, mit denen die Eisenatome ein Schwarzes Loch umkreisen, durch eine Wellenlängenverschiebung des Lichts nach. Diesem relativistischen Doppler-Effekt überlagert sich wegen der großen Masse von Schwarzen Löchern die so genannten Gravitationsrotverschiebung - beides Phänomene, wie sie die Relativitätstheorie fordert. So postuliert die Spezielle Relativitätstheorie, dass schnell bewegte Uhren langsamer laufen; nach der Allgemeinen Relativitätstheorie gilt dies auch für Uhren in der Nähe großer Massen. Auf die elektromagnetische Strahlung übertragen heißt das: Die Wellenlänge des von Eisenatomen ausgesandten Lichts wird in den langwelligen, roten Teil des Spektrums verschoben. Dabei ergibt sich eine verbreiterte, asymmetrische Linienform - gleichsam ein verschmierter Fingerabdruck.

Blickt man von der Seite auf die in der Akkretionsscheibe um ein Schwarzes Loch herumrasende Materie (Abb. 1), erscheint das Licht der sich auf uns zu bewegenden Eisenatome stark ins Blaue verschoben und wesentlich heller als das jener Atome, die sich von uns entfernen. Die relativistischen Effekte sind umso stärker, je näher die Materie dem Schwarzen Loch kommt. Wegen der verzerrten Raumzeit sind sie am stärksten bei sehr schnell rotierenden Schwarzen Löchern. In den vergangenen Jahren gelangen Messungen relativistischer Eisenlinien an wenigen, nahe gelegenen aktiven Galaxien; zum ersten Mal wurden die Astronomen 1995 mit dem japanischen Satelliten ASCA fündig.

Nun haben Forscher um Günther Hasinger, Xavier Barcons vom spanischen Instituto de Física de Cantabria und Andy Fabian von der britischen Universität Cambridge den oben beschriebenen relativistisch verschmierten Fingerabdruck der Eisenatome auch im Röntgenhintergrund aufgespürt, also im Licht von Schwarzen Löchern in den Zentren weit entfernter Galaxien (Abb. 2). Dazu richteten die Forscher das Observatorium XMM-Newton der europäischen Raumfahrtagentur ESA insgesamt mehr als 500 Stunden auf einen Himmelsauschnitt in der Konstellation Großer Wagen.

Wegen der Ausdehnung des Universums bewegen sich die Galaxien umso schneller von uns fort, je weiter entfernt sie sind. Diese unterschiedlich hohen Fluchtgeschwindigkeiten lassen die Spektrallinien bei verschiedenen Wellenlängen erscheinen. Daher mussten die Astronomen das Röntgenlicht sämtlicher Galaxien zunächst auf das Ruhesystem unserer Milchstraße korrigieren und erhielten damit eine absolute Bezugsgröße. Dafür wurden mit dem amerikanischen Keck-Teleskop auf Hawaii Geschwindigkeitsmessungen für mehr als 100 Objekte durchgeführt. Als die Forscher deren Licht addiert hatten, zeigte sich ein unerwartet starkes Signal - und die charakteristisch verbreiterte Form der Eisenlinie.

Aus der Stärke des Röntgensignals schlossen die Astronomen unter anderem auf die Anzahl der Eisenatome innerhalb der Materie. Überraschenderweise ist die chemische Häufigkeit von Eisen im "Futter" dieser jungen Schwarzen Löcher etwa dreifach größer als in unserem wesentlich später entstandenen Sonnensystem. Die Zentren der Galaxien im frühen Universum hatten also eine außerordentlich effiziente Methode, Eisen zu produzieren - möglicherweise, weil in aktiven Galaxien besonders viele massereiche Sterne die chemischen Elemente bis hin zum Eisen vergleichsweise schnell erbrüten.

Die Breite der Linie lässt darauf schließen, dass die Eisenatome dem Schwarzen Loch sehr nahe kommen und deshalb die meisten Schwarzen Löcher im Weltall vermutlich schnell rotieren. Denn diese Schwarzen Löcher reißen den sie umgebenden Raum mit wie ein Rührwerk den Teig. Deshalb kann Materie, die in der selben Richtung um ein Schwarze Loch fliegt, näher an das Massemonster gelangen, ohne hineinzufallen. Und so sieht man hier höhere Geschwindigkeiten und eine größere Gravitationsrotverschiebung. Dieser Befund ergibt sich auch, wenn man das Licht im Röntgenhintergrund mit der gesamten Masse der "schlafenden" Schwarzen Löcher in den Zentren der Galaxien vergleicht, wie das kürzlich mehrere Forschergruppen getan haben.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Eisenatom Galaxie Materie Relativitätstheorie Röntgenhintergrund

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie