Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste ultrakurz gepulste Röntgenstrahlen

15.02.2005


Das violette Licht entsteht aus Heliumatomen, die durch intensives Laserlicht angeregt werden. Der Laserpuls breitet sich entlang der Achse des violetten Flügels (horizontal) durch das Heliumgas aus. Den gleichen Weg nimmt der nicht sichtbare Röntgenstrahl gebündelt in einem Durchmesser von nur einigen hundert Mikrometern. Bild: J. Seres, Technische Universität Wien


Deutsch-österreichisches Physikerteam erzeugt erstmals laserähnliche Röntgenstrahlen, die außergewöhnliche Anwendungsmöglichkeiten versprechen


Das erste kompakte Gerät, das einen laserartigen Röntgenstrahl für eine Wellenlänge von einem Nanometer erzeugt, haben Physiker vom Max-Planck-Institut für Quantenoptik in Garching unter der Leitung von Prof. Ferenc Krausz in Zusammenarbeit mit Kollegen der Technischen Universität Wien und der Universitäten Würzburg und München entwickelt. Damit sind sie dem Traum vieler Radiologen und Biologen von einer kompakten "Lichtquelle", die ultrakurz gepulste Röntgenstahlen in einer Richtung wie Laserlicht aussendet, ein Stück näher gekommen. Die Wissenschaftler sind sich sicher, dass eine solche Quelle es in Zukunft ermöglichen wird, Röntgenbilder mit weit höherer Auflösung bei gleichzeitig stark reduzierter Strahlendosis gegenüber der heutigen Bilderstellung zu erzeugen. Für die Krebsfrüherkennung würde das eine dramatische Reduktion des Risikos bedeuten. Mit einer solchen Strahlenquelle ausgestattete Mikroskope würden es ermöglichen, Biomoleküle in ihrer natürlichen Umgebung mit einer Auflösung im Nanometerbereich zu analysieren (Nature, 10. Februar 2005).

Die Farbe des Lichtes wird durch die Zykluslänge einer elektromagnetischen Welle, der so genannten Wellenlänge, festgelegt. Rotes Licht hat eine Wellenlänge von etwa 700 Nanometern, während violettes Licht mit einer Wellenlänge von etwa 400 Nanometer vom menschlichen Auge gerade noch wahrgenommen wird. Licht mit kürzeren Wellenlängen (ultraviolettes Licht) ist unsichtbar, und wenn sich der Wellenzyklus auf weniger als einen Nanometer verkürzt, ist der Röntgenstrahlenbereich erreicht.


Das deutsch-österreichische Forscherteam fokussierte eine Sequenz von intensiven ultrakurzen Blitzen von rotem Licht auf Heliumgas, um 700-Nanometer Laserlicht in 1-Nanometer Röntgenlicht umzuwandeln, das von den angeregten He-Atomen ausgestrahlt wird. Das hochintensive Laserfeld bewirkt gigantische Oszillationen der negativ geladenen Elektronenwolke um den positiv geladenen Atomkern und verwandelt dadurch die Atome zu Antennen. Wegen der sehr großen Amplituden ihrer Schwingungen, strahlen die Atome nicht nur mit der Wellenlänge des antreibenden Lasers (700 Nanometer) sondern auch mit kürzeren Wellenlängen. Da die Antennen im Gleichtakt durch das Laserfeld angesteuert werden, wird der Zeittakt auch beim Abstrahlen der Wellen beibehalten. Die winzigen "atomaren" Wellen sind zwar außerordentlich schwach, aber sie addieren sich, da sie alle im Takt schwingen. Damit entsteht eine Röntgenwelle von signifikanter Intensität, die in einem gerichteten Strahl parallel zum einfallenden Laserlicht ausgesandt wird.

Das oben beschriebene Phänomen ist nicht neu. Es handelt sich dabei um eine Standard-Technik für die routinemäßige Erzeugung laserähnlicher ultravioletter Strahlung für einen Wellenlängenbereich von 100 Nanometer bis unterhalb von 10 Nanometer. Es wird jedoch immer schwerer, die Grenzen dieser Technologie zu kürzeren Wellenlängen hin zu verschieben, da durch das starke Laserfeld mehr und mehr Elektronen aus den Atomen gerissen werden, die dann den Aufbau einer intensiven Welle aus schwachen "atomaren" Wellen behindern.

Die Arbeitsgruppen haben diese Probleme jetzt gelöst, indem sie die Atome mit den weltweit kürzesten hochintensiven Laserpulsen bestrahlten. Die Pulsdauer betrug nur noch fünf millionstel einer milliardstel Sekunde (= fünf Femtosekunden). Diese Pulse treffen die Atome so abrupt, dass Elektronen vor dem Aussenden der Röntgenstrahlen nicht aus den Atomen gerissen werden können. Dank dieser extrem kurzen Wechselwirkungszeit schafften es die Forscher nicht nur die Nanometerbarriere zu durchstoßen, ihre Röntgenstrahlenquelle dürfte auch erstmalig Röntgenpulse mit einer Pulsdauer von kürzer als 0,1 Femtosekunden (= 100 Attosekunden) realisieren. Der von der neuen Quelle gelieferte Röntgenstrahl ist gegenwärtig noch zu schwach für praktische Anwendungen. Aber die Forscher sind überzeugt, dass technische Verbesserungen die Leistung der Röntgenstrahlen um einige Größenordnungen erhöhen werden. Wenn dieses Kunststück gelungen ist, sind die Forscher überzeugt, dass das neue "Werkzeug" völlig neue Möglichkeiten auf verschiedenen Gebieten der Physik, Biologie und Materialwissenschaften bieten wird. [TN]

Originalveröffentlichung:

J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, F. Krausz
Source of coherent kiloelectronvolt X-rays
Nature 433, 596, 10 January February 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nanometer Röntgenstrahl Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie