Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste ultrakurz gepulste Röntgenstrahlen

15.02.2005


Das violette Licht entsteht aus Heliumatomen, die durch intensives Laserlicht angeregt werden. Der Laserpuls breitet sich entlang der Achse des violetten Flügels (horizontal) durch das Heliumgas aus. Den gleichen Weg nimmt der nicht sichtbare Röntgenstrahl gebündelt in einem Durchmesser von nur einigen hundert Mikrometern. Bild: J. Seres, Technische Universität Wien


Deutsch-österreichisches Physikerteam erzeugt erstmals laserähnliche Röntgenstrahlen, die außergewöhnliche Anwendungsmöglichkeiten versprechen


Das erste kompakte Gerät, das einen laserartigen Röntgenstrahl für eine Wellenlänge von einem Nanometer erzeugt, haben Physiker vom Max-Planck-Institut für Quantenoptik in Garching unter der Leitung von Prof. Ferenc Krausz in Zusammenarbeit mit Kollegen der Technischen Universität Wien und der Universitäten Würzburg und München entwickelt. Damit sind sie dem Traum vieler Radiologen und Biologen von einer kompakten "Lichtquelle", die ultrakurz gepulste Röntgenstahlen in einer Richtung wie Laserlicht aussendet, ein Stück näher gekommen. Die Wissenschaftler sind sich sicher, dass eine solche Quelle es in Zukunft ermöglichen wird, Röntgenbilder mit weit höherer Auflösung bei gleichzeitig stark reduzierter Strahlendosis gegenüber der heutigen Bilderstellung zu erzeugen. Für die Krebsfrüherkennung würde das eine dramatische Reduktion des Risikos bedeuten. Mit einer solchen Strahlenquelle ausgestattete Mikroskope würden es ermöglichen, Biomoleküle in ihrer natürlichen Umgebung mit einer Auflösung im Nanometerbereich zu analysieren (Nature, 10. Februar 2005).

Die Farbe des Lichtes wird durch die Zykluslänge einer elektromagnetischen Welle, der so genannten Wellenlänge, festgelegt. Rotes Licht hat eine Wellenlänge von etwa 700 Nanometern, während violettes Licht mit einer Wellenlänge von etwa 400 Nanometer vom menschlichen Auge gerade noch wahrgenommen wird. Licht mit kürzeren Wellenlängen (ultraviolettes Licht) ist unsichtbar, und wenn sich der Wellenzyklus auf weniger als einen Nanometer verkürzt, ist der Röntgenstrahlenbereich erreicht.


Das deutsch-österreichische Forscherteam fokussierte eine Sequenz von intensiven ultrakurzen Blitzen von rotem Licht auf Heliumgas, um 700-Nanometer Laserlicht in 1-Nanometer Röntgenlicht umzuwandeln, das von den angeregten He-Atomen ausgestrahlt wird. Das hochintensive Laserfeld bewirkt gigantische Oszillationen der negativ geladenen Elektronenwolke um den positiv geladenen Atomkern und verwandelt dadurch die Atome zu Antennen. Wegen der sehr großen Amplituden ihrer Schwingungen, strahlen die Atome nicht nur mit der Wellenlänge des antreibenden Lasers (700 Nanometer) sondern auch mit kürzeren Wellenlängen. Da die Antennen im Gleichtakt durch das Laserfeld angesteuert werden, wird der Zeittakt auch beim Abstrahlen der Wellen beibehalten. Die winzigen "atomaren" Wellen sind zwar außerordentlich schwach, aber sie addieren sich, da sie alle im Takt schwingen. Damit entsteht eine Röntgenwelle von signifikanter Intensität, die in einem gerichteten Strahl parallel zum einfallenden Laserlicht ausgesandt wird.

Das oben beschriebene Phänomen ist nicht neu. Es handelt sich dabei um eine Standard-Technik für die routinemäßige Erzeugung laserähnlicher ultravioletter Strahlung für einen Wellenlängenbereich von 100 Nanometer bis unterhalb von 10 Nanometer. Es wird jedoch immer schwerer, die Grenzen dieser Technologie zu kürzeren Wellenlängen hin zu verschieben, da durch das starke Laserfeld mehr und mehr Elektronen aus den Atomen gerissen werden, die dann den Aufbau einer intensiven Welle aus schwachen "atomaren" Wellen behindern.

Die Arbeitsgruppen haben diese Probleme jetzt gelöst, indem sie die Atome mit den weltweit kürzesten hochintensiven Laserpulsen bestrahlten. Die Pulsdauer betrug nur noch fünf millionstel einer milliardstel Sekunde (= fünf Femtosekunden). Diese Pulse treffen die Atome so abrupt, dass Elektronen vor dem Aussenden der Röntgenstrahlen nicht aus den Atomen gerissen werden können. Dank dieser extrem kurzen Wechselwirkungszeit schafften es die Forscher nicht nur die Nanometerbarriere zu durchstoßen, ihre Röntgenstrahlenquelle dürfte auch erstmalig Röntgenpulse mit einer Pulsdauer von kürzer als 0,1 Femtosekunden (= 100 Attosekunden) realisieren. Der von der neuen Quelle gelieferte Röntgenstrahl ist gegenwärtig noch zu schwach für praktische Anwendungen. Aber die Forscher sind überzeugt, dass technische Verbesserungen die Leistung der Röntgenstrahlen um einige Größenordnungen erhöhen werden. Wenn dieses Kunststück gelungen ist, sind die Forscher überzeugt, dass das neue "Werkzeug" völlig neue Möglichkeiten auf verschiedenen Gebieten der Physik, Biologie und Materialwissenschaften bieten wird. [TN]

Originalveröffentlichung:

J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, F. Krausz
Source of coherent kiloelectronvolt X-rays
Nature 433, 596, 10 January February 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nanometer Röntgenstrahl Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise